Cho S= 3^0+3^2+3^4+3^6+...+3^2002. a,Tính S
Cho S = 3^0 + 3^2 + 3^4 + 3^6 +....+ 3^2002
a) Tính S
b) Chứng minh S chia hết cho 7
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Cho : S = 3^0+3^2+3^4+3^6+..........+3^2002
a Tính S
b Chứng minh rắng Schia hết cho 7
Đấm vào chữ ĐÚNG giùm em ạ,
Ai bấm là người đẹp zai,xinh gái,quyến rũ....vv
Nói chung là rất đẹp
xin tick giùm em
cho S=3 mũ 0+3 mũ 2+3 mũ 4+3 mũ 6+...+3 mũ 2002
a)Tính S
b)Chứng minh S chia hết cho 7
cho S=3^0+3^2+3^4+3^6+........+3^2002
tính S
cmr:S chỉ hết cho 7
S = 30 + 32 + 34 + .... + 32002
Nhân cả hai vế của S với 32 ta được :
32S = 32 ( 30 + 32 + 34 + .... + 32002 )
= 32 + 34 + 36 + ..... + 32004
Trừ cả hai vế của 32S cho S ta được :
32S - S = ( 32 + 34 + 36 + ..... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
8S = 32004 - 1
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
olm.vn/hoi-dap/question/102201.html
Bạn kham khảo tại đường link trên .
Cho S=\(^{3^{0^{ }}+3^{2^{ }}+3^4+3^6+.....+3^{2002}}\)
a, Tính S
b,CMR S\(⋮\)7
a, \(S=3^0+3^2+3^4+....+3^{2002}\)
\(3S=3+3^3+....+3^{2003}\)
\(2S=3^{2003}-1\)
b, \(S=\left(3^0+3^2+3^4\right)+\left(3^4+3^6+3^8\right)+...+\left(3^{2000}+3^{1998}+3^{2002}\right)⋮7\)
=> (đpcm)
S=3^0+3^2+3^4+3^6+....+3^2002
A tính S
B chứng minh S chia hết 7
a ) Nhân 9 vào 3 vế của S , ta được :
9S = 32 ( 30 + 32 + 34 + .... + 32002 )
=> 9S = 32 + 34 + 36 + .... + 32004
Lấy biểu thức 9S - S , ta được :
9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
=> 8S = 32004 - 1
=> S = ( 32004 - 1 ) : 8
ý b tự làm !
ai thương mình cho hết âm ai thì sẽ may mắn hết năm
Cho S=30+32+34+36+...+32002
a)Tính S
b)Chứng minh S:7
Ta có : 32S = 32.( 30 + 32 + 34 + .... + 32002 )
=> 9S = 32 + 34 + 36 + .... + 32004
=> 9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
=> 8S = 32004 - 1
=>S = \(\frac{3^{2004}-1}{8}\)
cho S = 30 + 32 + 34 + 36 + ............+ 32002
a) tính S
b) chứng minh S chia hết cho 7
a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)
b, Xét dãy số mũ : 0;2;4;6;...;2002
Số số hạng của dãy số trên là :
( 2002 - 0 ) : 2 + 1 = 1002 ( số )
Ta ghép được số nhóm là :
1002 : 3 = 334 ( nhóm )
Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)
Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)
cho S = 30 + 32 +34 +36 +...+32002
a) tính tổng S
b)CMR : S chia hết cho 7