\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0tính\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(Cho:\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và:\frac{a}{x}+\frac{b}{y}+\frac{c}{x}=0.\\ CMR:\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Bạn chỉ cần bình phương PT x/a + y/b + z/c
và chỉ ra ayz + bxz + cxy = 0 ở PT 2 là xong
:D
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow(\frac{x}{a}+\frac{y}{b}+\frac{z}{c})^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1-2\frac{ayz+bxz+cxy}{abc}=1-2\cdot0=1(đpcm)\)
\(a+b+c=a^2+b^2+c^2=1và\frac{x}{a}=\frac{y}{b}=\frac{z}{c}chứngminh\left(x+y+z\right)^2=x^2+y^2+z^2\)
bài 1) CMR
a) (x+y)(y+z)(z+x)=0 (x;y;z#0)
thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
b) cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
chứng minh \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Ta có:
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)
1. Giải phương trình: 3x2+y2+2x-2y=1
2. a) Tìm x,y,z thỏa mãn phương trình sau:
9x2+y2+2z2-18x+4z-6y+20=0
b) Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Chứng minh rằng: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
2/a/\(\Leftrightarrow9x^2-18x+9+y^2-6y+9+2z^2+4z+2=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\).Từ đó suy ra
\(\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
b/\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bzx+cxy=0\)
Ta có \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bzx+cxy}{abc}=1\)
\(\RightarrowĐPCM\)
1/Mạn phép sửa đề :\(\left\{{}\begin{matrix}3x^2+y^2+2x-2y-1=0\left(1\right)\\2x\left(x+y\right)=2\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) đc \(x^2-2xy+y^2+2x-2y-1=-2\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
Suy ra x-y=-1.Thế ngược lại vào 2 tìm đc x,y
.Nếu mà bạn giữ nguyên đề như vậy thì
Giải phương trình để tìm x bằng cách tìm a, b, và c
của phương trình bậc hai sau đó áp dụng công thức phương trình bậc hai. x=−1−√−3y2+6y+43 Lớp 9 x=−1+√−3y2+6y+43Cho : \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\left(a,b,c,x,y,z\ne0\right)\)
CMR : \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Đặt : x/a = m ; y/b = n ; z/c = p
=> m+n+p = 1 ; 1/m+1/n+1/p=0
1/m+1/n+1/p=0
<=> mn+np+pm/mnp=0
<=> mn+np+pm=0
<=> 2mn+2np+2pm=0
Xét : 1 = (m+n+p)^2 = m^2+n^2+p^2+2mn+2np+2pm = m^2+n^2+p^2
=> x^2/a^2+y^2/b^2+z^2/c^2 = 1
=> ĐPCM
Tk mk nha
Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Rightarrow\frac{ayz}{xyz}+\frac{bxz}{xyz}+\frac{cxy}{xyz}=0\)
\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\left(1\right)\)
Mặt khác: \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+ayz+bxz}{abc}\right)=1\left(2\right)\)
Thay (1) vào (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{0}{abc}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)
cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0.tinhA=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Câu hỏi của Tăng Thiện Đạt - Toán lớp 8 - Học toán với OnlineMath
Tham khảo nhé mk làm rồi !
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)
\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)
Cho a,b,c,x,y,z khac 0
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0;\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
Chung minh \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Ta có
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
Ta có
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
\(\Rightarrow\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2xy.abc^2+2yz.a^2bc+2xz.ab^2c}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
Ta có \(cxy+ayz+bxz=0\)
\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2abc.0}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)
bài này bạn bình phương vế thứ 2 lên rồi phân k vế 1 là ra đấy
Cho a;b;c;x;y;z khác 0. T/m: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) . C/m: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
CM :\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\) " Cm thế này cho gọn dễ nhìn ok "
\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right).\) " quy đồng khửi mẫu "
\(a^2yx+a^2y^2+b^2x^2+b^2yx=a^2xy+2abxy+b^2xy\) " tính
\(\left(a^2yx-a^2yx\right)+\left(b^2xy-b^2xy\right)+\left(a^2y^2+2abxy+b^2x^2\right)=0\) " nhóm "
\(\left(a^2y^2+2abxy+b^2x^2\right)=0\) rút gọn
\(\left(ay+bx\right)^2=0\)" hằng đẳng thức "
\(\left(ay+bx\right)^2=0\) " đúng dcpcm "
Cho : a ; b ;c ; x ; y ; z khác 0 tm :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) Cm : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
bài này chúa Pain làm rất nhiều lần rồi ? m ko biết ấn vào câu hỏi tương tự để xem ak
https://olm.vn/hoi-dap/question/1159233.html.
\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\) " C/M 2 số rồi suy ra 3 số cx như vậy "
\(\frac{a^2x+b^2y}{xy}=\frac{\left(a+b\right)^2}{x+y}\) " Quy đồng VT "
\(\left(a^2x+b^2y\right)\left(x+y\right)=xy\left(a+b\right)\left(a+b\right)\) " nhân chéo mẫu số "
\(a^2x^2+a^2xy+b^2y^2+b^2xy=a^2xy+2abxy+b^2xy.\)
\(\left(a^2x^2-2abxy+b^2y^2\right)+\left(a^2xy-a^2xy\right)+\left(b^2xy-b^2xy\right)=0\)
\(\left(ax-by\right)^2=0\) " đúng " dcpcm