Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đời Chán Quá
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
26 tháng 2 2021 lúc 11:20

Xét BĐT: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy},\forall x,y\ge1\)

Chứng minh: Quy đồng ta được: \(\left(1+xy\right)\left(1+y^2\right)+\left(1+xy\right)\left(1+x^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow1+y^2+xy+xy^3+1+x^2+xy+x^3y\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow2xy+xy^3+x^3y\ge x^2+y^2+2x^2y^2\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)đúng \(\forall x,y\ge1\)

Không mất tính tổng quát giả sử c là số nhỏ nhất trong 3 số a, b, c

Áp dụng BDDT phía trên: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Cần chứng minh: \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\Leftrightarrow2\left(\frac{1}{1+ab}-\frac{1}{1+abc}\right)+\frac{1}{1+c^2}-\frac{1}{1+abc}\ge0\)

\(\Leftrightarrow\frac{2ab\left(c-1\right)}{\left(1+ab\right)\left(1+abc\right)}+\frac{c\left(ab-c\right)}{\left(1+c^2\right)\left(1+abc\right)}\ge0\)đúng \(\forall a,b\ge c\ge1\)

Vậy BĐT đã được chứng minh, dấu = xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Đời Chán Quá
4 tháng 3 2021 lúc 9:48

cảm ơn nha

Khách vãng lai đã xóa
Phung Ngoc Tam
Xem chi tiết
TRỊNH MINH TÂM
12 tháng 3 2022 lúc 17:01

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Hahaa
Xem chi tiết
Chu Thi Thuy Nga
10 tháng 12 2017 lúc 6:16

a; A thuộc {2;3;4}

A thuộc {1<x<5/x thuộc N}

C thuộc {2;3;4;5;6;7}

C thuộc {2_< x_<7/x thuộc N }

B thuộc {5;6;7}

B thuộc {4 < x < 8 / x thuộc N}

b;

A c C

B c C

k cho mình nhé

Minh Nhật Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2023 lúc 16:08

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26

Hồ Trương Minh Trí
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Anh Sơn
Xem chi tiết
Đoàn Văn Toàn
28 tháng 7 2017 lúc 20:22

à bài này dễ lắm

Trần Phúc
28 tháng 7 2017 lúc 20:27

\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Theo đề ta được:

\(\hept{\begin{cases}a< \left(b+c\right)\\b< \left(a+c\right)\\c< \left(a+b\right)\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b+c}< 0\\\frac{b}{a+c}< 0\\\frac{c}{a+b}< 0\end{cases}\Rightarrow}\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ne N}\)( Tổng của ba phân số không thể bằng 1 số tự nhiên với a,b,c không là số âm )

trần hoàn vũ
Xem chi tiết
Lê Anh Sơn
Xem chi tiết