1) cho a,b,c la các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}\)
Cho a, b, c là các số thỏa mãn điều kiện : \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó giá trị của biểu thức P = \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)là
Lớp 7 gì mà dễ ẹc :))
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Rightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a-5b=-3c\)
\(\Leftrightarrow a-4a=-3c\)
\(\Leftrightarrow-3a=-3c\)
\(\Rightarrow a=c\)
Ta có : \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=8\)
Cho các số a,b,c thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đó giá trị biểu thức \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
1.Cho các số a, b, c thỏa mãn điều kiện: \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Tính \(\frac{\left(5b+4a\right)^3}{\left(5b+4c\right)^2.\left(a+3c\right)}\)
Cho các số a, b, c thỏa mãn điều kiện :
\(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)}\)
\(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Rightarrow\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{\left(2a-b\right)+\left(b-c+a\right)}{\left(a+b\right)+\left(2a-b\right)}=\frac{3a-c}{3a}=\frac{2}{3}\)
\(\Rightarrow2\times3a=3\times\left(3a-c\right)\)
\(\Rightarrow6a=9a-3c\)
\(\Rightarrow6a-9a=-3c\)
\(\Rightarrow-3a=-3c\)
\(\Rightarrow\frac{-3a}{-3}=\frac{-3c}{-3}\)
\(\Rightarrow a=c\)
\(\Rightarrow\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=\frac{\left(5b+4a\right)^5}{\left(5b+4a\right)^2\left(a+3a\right)^3}=\frac{\left(5b+4a\right)^3}{\left(4a\right)^3}\)
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Rightarrow3\times\left(2a-b\right)=2\left(a+b\right)\)
\(\Rightarrow6a-3b=2a+2b\)
\(\Rightarrow6a-2a=3b+2b\)
\(\Rightarrow4a=5b\)
\(\Rightarrow b=\frac{4a}{5}\)
\(\Rightarrow\frac{\left(5b+4a\right)^3}{\left(4a\right)^3}=\left(\frac{5\times\frac{4a}{5}+4a}{4a}\right)^3=\left(\frac{4a+4a}{4a}\right)^3\)
\(\Rightarrow\left(\frac{8a}{4a}\right)^3=2^3=8\)
Cho a,b,c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=...\) Chỉ mình cách làm luôn nhé
Cho a,b,c là cac so thoa man dieu kien \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đo gia tri cua bieu thuc \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
Cho a;b;c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}\)= \(\frac{b-c+a}{2a-b}\)=\(\frac{2}{3}\)
Khi đó giá trị của biểu thức P=\(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Leftrightarrow6a-2a=2b+3b\)
\(\Leftrightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow4a-3a=3b-3c+2b\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a=4a-3c\)
\(\Leftrightarrow3a=3c\)
\(\Rightarrow a=c\)
\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)
1. Tìm giá trị lớn nhất của biểu thức 7lx-3l-l4x+8l-l2-3xl
2. Cho hàm số f(x) xác định với mọi x \(\varepsilon\)Q. Cho f(a+b) =f(a.b) với mọi a, b và f(2011) = 11. Tìm f(2012)
3.Cho hàm số f thỏa mãn f(1) =1; f(2) = 3; f(n) +f(n+2) = 2f(n+1) với mọi số nguyên dương n. Tính f(1) + f(2) + f(3)+...+f(30)
4. Tính giá trị của biểu thức \(\left(\frac{3}{4}-81\right)\left(\frac{^{3^2}}{5}-81\right)\left(\frac{3}{6}^3-81\right)...\left(\frac{3}{2014}^{2011}-81\right)\)
5. Đa thức P(x) cộng với đa thức Q(x) = \(x^3-2x^2-1\) được đa thức \(^{x^2}\). Tìm hệ số tự do của P(x)
6. Cho a, b, c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-a+c}{2a-3}=\frac{2}{3}\). Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4a\right)^2\left(a+3c\right)^3}\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
cho a,b,c là các số thỏa mãn điều kiện \(\dfrac{2a-b}{a+b}=\dfrac{b-c+a}{2a-b}=\dfrac{2}{3}\)
khi đó giá trị biểu thức \(P=\dfrac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\) là:................