Tính tổng \(\frac{1}{1.4}+\frac{1}{4.9}+\frac{1}{9.16}+...+\frac{1}{100.121}\)
tính
a, A=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
b, B=\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\left(\frac{1}{121}-1\right)\)
c,C=\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+\frac{9}{16.25}+\frac{11}{25.36}\)
a)
\(A=\left(\frac{1}{9}-\frac{1}{10}\right)-\left(\frac{1}{8}-\frac{1}{9}\right)-....-\left(1-\frac{1}{2}\right)=\frac{1}{9}-\frac{1}{10}-\frac{1}{8}+\frac{1}{9}-....-1+\frac{1}{2}\)
\(A=-\left(\frac{1}{10}+1\right)=-\frac{11}{10}\)
a)\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\\ \Rightarrow A=-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\\ \Rightarrow A=-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)Đặt \(B=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}+\frac{1}{90}\)
\(\Rightarrow B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow B=1-\frac{1}{10}=\frac{9}{10}\)
Ta có : \(A=-B\)
\(\Rightarrow A=-\frac{9}{10}\)
a) A=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
A=\(-\left(\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
A=\(-\left(\frac{1}{9.10}+\frac{1}{8.9}+\frac{1}{7.8}+\frac{1}{6.7}+\frac{1}{5.6}+\frac{1}{4.5}+\frac{1}{3.4}+\frac{1}{2.3}+\frac{1}{1.2}\right)\)
A=-\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{9}-\frac{1}{10}\right)\)
A=-(\(1-\frac{1}{10}\))
A=-\(\frac{9}{10}\)
* Thực hiện phép tính (tính nhanh nếu có thể)
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+\frac{15}{16.31}\)
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+\frac{15}{16.31}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{31}\)
\(=1-\frac{1}{31}\)
\(=\frac{30}{31}\)
Dựa vào công thức được chứng minh:
(Em có thể chứng minh lại)
Ta có:
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{31}\)
\(=1-\frac{1}{31}\)
\(=\frac{30}{31}\)
Chúc em học tốt^^
bạn hãy thử nghĩ ra cách tính nhanh nếu có thể :)) mới vô bạn phải nghĩ đến việc 3=4-1 để rút được cái tử số và các số 5,7,15 cũng tách như vậy dựa theo mẫu
cuối cùng ta được \(\frac{4}{1.4}-\frac{1}{1.4}+\frac{9}{4.9}-\frac{4}{4.9}+...\)... Mấy cái sau bạn tự khai triển nhá
Rút lại ta được 1-\(\frac{1}{31}\)là bằng 30 phần 31
Tính hợp lý :
a, A = \(\frac{-5.8-10.24-15.32}{10.16+20.48-30.64}\)
b, B = \(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+\frac{15}{16.31}\)
c, C =\(\frac{[3.-4.2^{16}]^2}{11.2^{13}.4^{11}-16^9}\)
Tính nhanh: \(\frac{3}{1.4}\)+ \(\frac{5}{4.9}\)+ \(\frac{7}{9.16}\)+..................+ \(\frac{19}{81.100}\)
giúp mk nha,làm nhanh và đúng thì mk tick ^^
ngày mai kt 15 p rồi @@
\(\text{Ta có :}\)
\(\frac{3}{1.4}=1-\frac{1}{4}\)
\(\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\)
\(\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\)
\(......\)
\(\frac{19}{81.100}=\frac{1}{81}-\frac{1}{100}\)
\(\text{Cộng vế với vế ta có:}\)
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Ko biết có đc k ko ta!?
Cảm ơn mà toàn k sai hoài là sao!! ahuhu
Thực hiện phép tính hợp lí nếu có thể:
\(\frac{221}{240}+\frac{1}{3.8}+\frac{1}{6.12}+\frac{1}{9.16}+.....+\frac{1}{54.76}+\frac{1}{57.80}\)
thực hiện phép tính
a)\(\frac{27^4.2^3-3^{10}.4^3}{6^4.9^3}\)
b) \(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-7-...-49}{89}\)
b) \(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{2-\left(1+3+5+7+..+49\right)}{12}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\frac{2-\left(12.50+25\right)}{89}=-\frac{5.9.7.89}{5.4.7.7.89}=\frac{-9}{28}\)
Tính:
\(\frac{1}{3.10}+\frac{1}{3.17}+\frac{1}{17.24}+...+\frac{1}{73.80}-\frac{1}{2.9}-\frac{1}{9.16}-\frac{1}{16.23}-\frac{1}{23.30}\)
Nếu phân số thứ 2 là \(\frac{1}{10.17}\) thì làm như vậy nè
\(\frac{1}{3.10}+\frac{1}{10.17}+...+\frac{1}{73.80}-\frac{1}{2.9}-\frac{1}{9.16}-\frac{1}{16.23}-\frac{1}{23.30}\)
= \(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{73}-\frac{1}{80}\right)-\left(\frac{1}{2.9}+\frac{1}{9.16}+\frac{1}{16.23}+\frac{1}{23.30}\right)\)
= \(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{80}\right)-\frac{1}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
= \(\frac{1}{7}.\frac{77}{240}-\frac{1}{7}\left(\frac{1}{2}-\frac{1}{30}\right)=\frac{1}{7}.\frac{77}{240}-\frac{1}{7}.\frac{7}{15}\)
= \(\frac{11}{240}-\frac{1}{15}\)
= \(-\frac{1}{48}\)
Bài 1 Tính giá trị biểu thức :
A = 3/1.4 + 5/4.9 + 7/9.16 + 9/16.25 + 11/25.36
B = 3/1.4 + 3/4.7 + ... + 3/100.103
C = 3/1.4 + 6/4.10 + 9/10.19 + 12/19.31 + 15/31.46 + 18/46.64
Bài 2 Chứng minh rằng :
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + ... + 1/50
Bài 1:
\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)
\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)
Bài1:Tính tổng
\(\frac{1}{1.4}+\frac{1}{2.5}+.......+\frac{1}{2015.2018}\)