CMR:
1/31+1/32+1/33+...+1/60 > 7/12
cho A = 1/31 + 1/32 + 1/33 + ... + 1/60 CMR : A > 7/12
tích mình đi
ai tích mình
mình tích lại
thanks
Số lượng số dãy số trên là :
\(\left(60-31\right):1+1=30\) ( số )
Do \(30⋮2\)nên ta nhóm A thành 2 nhóm như sau :
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}\right)\)
Ta có : \(\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{44}>\frac{1}{45}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{45}.15=\frac{1}{3}\left(1\right)\)
\(\frac{1}{46}>\frac{1}{60};\frac{1}{47}>\frac{1}{60};...;\frac{1}{59}>\frac{1}{60}\)
\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{60}.15=\frac{1}{4}\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(đpcm\right)\)
A=1/31+1/32+1/33+...+1/60. chứng minh A>7/12
A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) < 1/4 ; (1/51 + 1/52+...+1/59+1/60) < 1/5
Mà A = (1/3 + 1/4 + 1/5) = 47/60 > 7/12
Vậy A >7/12
Cho:A=1/31+1/32+1/33+..............+1/60
Chứng minh rằngA>7/12
\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+...+\frac{1}{60}\right)>\frac{1}{45}.15+\frac{1}{60}.15=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
=>đpcm
l-i-k-e cho mình nha
cho A= 1/31+1/32+1/33+.....+1/60
chứng minh rằng A> 7/12
A = 1/31 + 1/32 + 1/33 + ... + 1/60
=> A = (1/31 + 1/32 + ... + 1/45) + (1/46 + 1/47 + ... 1/60) > (1/45) x 15 + (1/60) x 15
=> A > 1/3 + 1/4 = 7/12
Vậy A > 7/12 (đpcm)
A= 1/31 +1/32 +....+ 1/60
CMR A>7/12
A = 1/31 + 1/32 + ... + 1/60
A = (1/31 + 1/32 + ... + 1/40) + (1/41 + 1/42 + ... + 50) + (1/51 + 1/52 + ... + 1/60)
A > 1/40 × 10 + 1/50 × 10 + 1/60 × 10
A > 1/4 + 1/5 + 1/6
A > 1/4 + 1/6 + 1/6
A > 1/4 + 1/3
A > 7/12
chưgs minh rằng :
1/31+1/32+1/33+.....+1/60>7/12
https://olm.vn/hoi-dap/question/144852.html
vào đây xem lời giải nó ( cách giải giống cô mik)
Ta có : \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}\right)\)
Số lượng số dãy số ban đầu là :
( 60 - 31 ) : 1 + 1 = 30 ( số )
Chia làm 2 nhóm , mỗi nhóm có :
30 : 2 = 15 ( số )
Ta có : \(\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{45}.15\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{3}\left(1\right)\)
Ta có : \(\frac{1}{46}>\frac{1}{60};\frac{1}{47}>\frac{1}{60};\frac{1}{60}=\frac{1}{60}\)
\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{60}.15\)
\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{4}\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\left(Đpcm\right)\)
Chúc bạn học tốt nha !!!
cho S=1/31+1/32+1/33+...+1/60 Cmr S<4/5
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)
\(< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+...+\frac{1}{50}\right)\)
\(=\frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)
Cho S= 1/31 + 1/32 + 1/33 +....+ 1/59 + 1/60. CMR 3/5<S<4/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Cho H=1/31+1/32+1/33+....+1/60
CMR : 0.6<H<0.8