Tìm GTLN của các biểu thức sau:
a) P= \(\frac{2012}{x^2+4x+2013}\) ; b) Q= \(\frac{a^{2012}+2013}{a^{2012}+2011}\)
Tìm GTLN của các biểu thức sau:
a) P= \(\frac{2012}{x^2+4x+2013}\) ; b) Q= \(\frac{a^{2012}+2013}{a^{2012}+2011}\)
\(P=\dfrac{2012}{x^2+4x+2013}\)
\(P_{MAX}\Rightarrow x^2+4x+2013_{MIN}\)
\(\Rightarrow x^2+4x+2013=1\)
\(P_{MIN}=\dfrac{2012}{1}=2012\)
\(Q=\dfrac{a^{2012}+2013}{a^{2012}+2011}\)
\(Q=\dfrac{a^{2012}+2011+2}{a^{2012}+2011}=\dfrac{a^{2012}+2011}{a^{2012}+2011}+\dfrac{2}{a^{2012}+2011}\)
\(Q=1+\dfrac{2}{a^{2012}+2011}\)
\(a^{2012}\ge0\)
\(Q_{MAX}\Rightarrow a^{2012}_{MIN}=0\)
\(\Rightarrow Q_{MAX}=1+\dfrac{2}{2011}=\dfrac{2013}{2011}\)
a)\(P=\dfrac{2012}{x^2+4x+2013}\)
Ta thấy: \(x^2+4x+2013=x^2+4x+4+2009\)
\(=\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow\dfrac{1}{\left(x+2\right)^2+2009}\le\dfrac{1}{2009}\)
\(\Rightarrow P=\dfrac{2012}{\left(x+2\right)^2+2009}\le\dfrac{2012}{2009}\)
Xảy ra khi \(x=-2\)
Tìm GTLN của
P= 2012/x2+4x+2013
Q=a2012+2013/a2012+2011
TÌM giá trị lớn nhất của các biểu thức sau
a,\(P=\frac{2012}{X^2+4X+2013}\)
b,\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
TÌM giá trị lớn nhất trong các biểu thức sau
a,\(P=\frac{2012}{X^2+4X+2013}\)
b,\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
\(x^2+4x+2013=x^2+4x+4+2009=\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow P\le\frac{2012}{2009}\)
\(\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{3}{a^{2012}+2011}=1+\frac{3}{a^{2012}+2011}\\ Qmax\Leftrightarrow a^{2012}min\Leftrightarrow a=0\)
Thay vào là ra
P lớn nhất bằng 2013
Q lớn nhất bằng 2013/2011 bạn nhé!~
Tìm giá tri lớn nhất của các biểu thức sau:
a) \(P=\frac{2012}{x^2+4x+2013}\) b) \(Q=\frac{a^{2012}+2013}{a^{2012}+2011}\)
P lớn nhất bằng 2013
Q lớn nhất bằng 2013/2011
a, Tìm GTLN của biểu thức: A(x)=-x-4x+5 và B(x)=4-/2x-1/
b, Cho P(x)=ax+b (a;b thuộc Z,a khác 0). Chứng minh rằng giá trị tuyệt đối của P(2013)-P(1) luôn > hoặc = 2012
1. Tìm 2 số x,y biết:
a/ x/2=y/4 và x^2y^2=2
b/4x=7y và x^2+y^2=260
2. Tìm giá trị lớn nhất cua biểu thức:
a/ A=2012/ |x|+2013
b/ B= |x|+2012/ -2013
3. Tìm giá trị bé nhất của biểu thức:
a/ C= |x|+2012/ 2013
b/ D= -10/ |x|+10
4. Tìm các số nguyên n sao cho các biểu thức sau là số nguyên:
a/ P=3n+2/n-1
b/ Q= 3|x|+1/ 3|x|-1
Tìm GTLN của \(\frac{2012}{x^2+4x+2013}\)
Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.
Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.
Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.
Vậy GTLN = 2012/2009.
Ta có:\(x^2+4x+2013=\left(x^2+2\cdot2x+2^2\right)+2009=\left(x+2\right)^2+2009\)
\(\Rightarrow HUY=\frac{2012}{x^2+4x+2013}=\frac{2012}{\left(x+2\right)^2+2009}\)
Để HUY lớn nhất thì \(\left(x+2\right)^2+2009\) nhỏ nhất.
Do \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow HUY\ge\frac{2012}{2009}\)
Dấu "=" xảy ra khi và chỉ khi:\(\left(x+2\right)^2=0\Leftrightarrow x=-2\).
Vậy \(HUY_{max}=\frac{2012}{2009}\Leftrightarrow x=-2\)
By zZz Phan Gia Huy zZz.