Tìm x :2^x+3.4^2=64
tim x
5^2x-1 = 125.5^4
7^x-3.4=196
2^x.2^x+3=64^2:2^5
5^2x-1=5^3.5^4
5^2x-1=5^7
=>2x-1=7
còn lại bn lm tiếp
Câu b hình như bn vik sai đề bài , đề bài đúng phải thế này :
7^x-3.4=296
7^x-12=296
7^x =296+12
7^x = 308
7^x = 7^3
=>x=3
c) 2^x.2^x+3=64^2:2^5
(2^x)^2 +3 = (2^6)^2 : 2^5
(2^x)^2 +3 = 2^12 : 2^5
(2^x.2) +3= 2^7
Tìm x
5/2.3 + 5/3.4 + ..... + 5/x.(x + 1 ) = 64/13
Giúp mik với
5(1/2.3+1/3.4+...+1/x(x+1)=64/13
5.(1/2-1/3+1/3-1/4+...+1/x-1/x+1)=64/13
5(1/2-1/x+10)=64/13
bạn tự làm tiếp nha mình bận rồi
Tìm x
5/1.2 + 5/2.3 + 5/3.4 + .... + 5/x.(x + 1) = 64/13
\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{64}{13}\)
\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{64}{13}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{13}\div5\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{65}\)
\(\Rightarrow x+1=65\Rightarrow x=65-1=64\)
\(\text{Vậy }x=64\)
1,Tìm x, biết:
a, |x|+1/3=4/5
b, |x+2/3|=1/4
c, |x-3/4|-2/3=3/5
d, 1/4+2.|2/3-x|=3/4
e, 16^x:4^x=16
g, (2x+1)^3=-64
h, 2^x/2+4.2^x=72
2,Tính
A=(1/2-1).(1/3-1).(1/4-1).....(1/2015-1)
B=1/1.2+1/2.3+1/3.4+...+1/2014.2015
Tìm X biết 2/2.3 + 2/3.4 + 2/4.5+...... +2/X(X+1) = 2007/2009
TÌM x THUỘC N:2/2.3+2/3.4+2/4.5+....+2/x.(x+1)=1999/2001
Đặt \(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2.}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow\frac{S}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2001}\)
\(\Rightarrow\)x+1=2001
x=2000
Vậy x=2000.
Tìm x, sao cho giá trị của phân số là 1:
1.2+2.3+3.4+...+99.100/x^2+(x^2+1)+(x^2+2)+...+(x^2+99)
Tìm x
1/4.4^x+3.4^(2-x)=832
Tìm số tự nhiên thỏa mãn: .
`@` `\text {Ans}`
`\downarrow`
\(\left(2\cdot x+2\right)^2=64\)
`\Rightarrow`\(\left(2x+2\right)^2=\left(\pm8\right)^2\)
`\Rightarrow`\(\left[{}\begin{matrix}2x+2=8\\2x+2=-8\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=8+2\\2x=-8+2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=10\\2x=-6\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=10\div2\\x=-6\div2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
`@` `\text {Kaizuu lv uuu}`