Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mỹ Hạnh
Xem chi tiết
Linh Nhi
4 tháng 8 2017 lúc 10:41

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

Nguyễn Mỹ Hạnh
4 tháng 8 2017 lúc 13:37

cảm ơn bạn nha

mình k cho ban roi do

Nguyễn Hà Thục Nhi
Xem chi tiết
Akai Haruma
23 tháng 10 lúc 19:46

Lời giải:

$A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2002-2001}{2001.2002}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2001}-\frac{1}{2002}$
$=1-\frac{1}{2002}<1$

Mà hiển nhiên $A>0$

$\Rightarrow 0< A< 1$. Do đó $A$ không phải số tự nhiên.

Hồng Vân Phạm
Xem chi tiết
Die Devil
9 tháng 8 2016 lúc 20:32

Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!

Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)

Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)

Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.

====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.

Nguyễn Anh Thư
Xem chi tiết
Nguyễn Viết Lâm Phong
Xem chi tiết
Chạmbóngnhẹnhàng Quangườ...
7 tháng 5 2016 lúc 8:55

tự làm đi , cần gì ai chỉ âu

Nguyễn Viết Lâm Phong
10 tháng 5 2016 lúc 19:43

ko biết làm nên nói vậy đây

Nguyễn Viết Lâm Phong
11 tháng 5 2016 lúc 8:13

Ta có :

\(\frac{1}{1^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

.........

\(\frac{1}{2011^2}<\frac{1}{2010.2011}\)

\(\frac{1}{2012^2}<\frac{1}{2011.2012}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\frac{1}{2012^2}<\frac{1}{1.2}+\frac{1}{2.3}+...\frac{1}{2010.2011}+\frac{1}{2011.2012}=1-\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}<1\)

\(\Rightarrow A<1\left(1\right)\)

Lại có A > 0 (2)

Từ (1) & (2) có :

0 < A < 1

\(\Rightarrow\) A  Không phải là số tự nhiên

Nguyễn Viết Lâm Phong
Xem chi tiết
Đàm Thị Minh Hương
7 tháng 5 2016 lúc 9:22

Ta có:

 1/2^2 < 1/1.2

1/3^2 < 1/2.3

...........

1/2011^2 < 1/2010.2011

1/2012^2 < 1/2011.2012

=>A=1/2^2+1/3^2+...+1/2011^2+1/2012^2<1/1.2+1/2.3+...+1/2010.2011+1/2011.2012=1-1/2+1/2-1/3+...+1/2010-1/2011+1/2011-1/2012     =1-1/2012 < 1

=> A < 1 (1)

Lại có; A>0 (2)

Từ (1) và (2) có:

 0 < A < 1

=> A ko phải là STN

k mih nha

pham van chuong
23 tháng 12 2016 lúc 21:55

kho the .nhin de bai ma lac het ca mat

Đoàn Chí Kiên
Xem chi tiết
Nguyễn Mỹ Hạnh
Xem chi tiết
Nguyen Thi Phuong
Xem chi tiết
Trịnh Thị Minh Ngọc
8 tháng 2 2015 lúc 12:39

tính nhanh tổng a ta thấy tổng là phân số vậy thì quá rõ

Thư Anhh
8 tháng 4 2015 lúc 17:03

Đặt mẫu số chung là: 2^6.3^4.....97

Thừa số phụ của các thừa số tương ứng là k1, k2, k3,..., k99.

Khi đó A= k1+k2+...+k99/2^6.3^4.....97

Ta thấy mẫu số chung của A là tích của các thừa số nguyên tố trong đó có thừa số 2 với 2^6 lớn nhất. Đặt mẫu số chung là 2^6.P (P là tích các thừa số nguyên tố lẻ không vượt quá 100). Trong  tất cả các thừa số phụ của các p/s, chỉ có duy nhất thừa số phụ của p/s 1/64=1/2^6 là số lẻ còn tất cả các thừa số phụ còn lại đều là chẵn. Nên khi thực hiện phép tính thì mẫu số chắn còn tử số lẻ => A ko phải số tự nhiên