Tìm số tự nhiên n, biết (n-1)(n^2+2n+3) là số nguyên tố.
Giải thích được thì càng tốt.
viết chương trình nhập vào số tự nhiên n và tính tổng các ước số của n mà các ước số đó là số nguyên tố.Giải thích n=6 thì ta có các ước số của 6 là 1,2,3,6.Trong đó các ước số là các số nguyên tố chỉ có 2 và 3.Vậy kết quả bằng 5(Pascal). Giúp mik v các bn
uses crt;
var i,n,t,j,kt:integer;
begin
clrscr;
readln(n);
t:=0;
for i:=2 to n do
if n mod i=0 then
begin
kt:=0;
for j:=2 to trunc(sqrt(i)) do
if i mod j=0 then kt:=1;
if kt=0 then t:=t+i;
end;
write(t);
readln;
end.
Dưới đây là một ví dụ về chương trình Pascal để tính tổng các ước số nguyên tố của một số tự nhiên n:
```pascal
program TinhTongUocSoNguyenTo;
var
n, i, j, sum: integer;
isPrime: boolean;
begin
write('Nhap vao so tu nhien n: ');
readln(n);
sum := 0;
for i := 1 to n do
begin
if n mod i = 0 then // Kiểm tra i có là ước số của n không
begin
isPrime := true;
for j := 2 to trunc(sqrt(i)) do // Kiểm tra i có phải là số nguyên tố không begin if i mod j = 0 then begin isPrime := false; break; end; end; if isPrime then // Nếu i là số nguyên tố, cộng vào tổng sum := sum + i; end;
end;
writeln('Tong cac uoc so nguyen to cua ', n, ' la: ', sum);
end.
```
Chương trình trên sẽ yêu cầu bạn nhập vào số tự nhiên n, sau đó tính tổng các ước số nguyên tố của n và hiển thị kết quả.
Bài 1:
a. Chứng minh với mọi số tự nhiên n thì 3n + 4 không là số chính phương?
b. Tìm n thuộc N để n2 + 2n+ 2 có là số chính phương
Giải càng nhanh càng tốt.
tìm tất cả các số tự nhiên n để 3^n + 6 là số nguyên tố
MK MỚI TÌM ĐƯỢC N=3 THÔI TÌM ĐƯỢC CÀNG NHIỀU CÀNG TỐT
3n + 6
Với n nguyên dương ta có:
3n chia hết cho 3
6 chia hết cho 3
=> 3n + 6 chia hết cho 3
< = > 3n không chia hết cho 3
< = > n = 0
3n + 6
Với n nguyên dương ta có:
3n chia hết cho 3
6 chia hết cho 3
=> 3n + 6 chia hết cho 3
< = > 3n không chia hết cho 3
< = > n = 0
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Tìm n tự nhiên sao cho : 1! + 2! + 3! + ....+ n! là số chính phương.
giúp mình càng nhanh càng tốt nhé !
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
tìm x và y bt:X+10/5=6/Y+1
tìm số nguyên n để 2n+3/n là một số nguyên
tìm số nguyên tố n để n+3 là số nguyên tố
Cho số tự nhiên n.Hãy giải thích tại sao 2n+3/2n+5 tối giản với các giá trị của n
b: Để A nguyên thì 2n+3 chia hết cho n
=>3 chia hết cho n
=>n thuộc {1;-1;3;-3}
c: Th1: n=2
=>n+3=5(nhận)
TH2: n=2k+1
=>n+3=2k+4=2(k+2)
=>Loại
d: Gọi d=ƯCLN(2n+3;2n+5)
=>2n+5-2n-3 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>PSTG
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
Tìm số tự nhiên n để biểu thức C=2n+2/n+2 + 5n+17/n+2 - 3n/n+2 là số tự nhiên
Cho phân số P=n+4/2n-1 với n thuộc Z. tìm số nguyên n để giá trị của P là số nguyên tố
Cho phân số M=n+1/n-1.Với giá trị nào của n thì M là một số chẵn?Một số nguyên âm?