Tìm GTNN của y=x^2+2+16/x^2
tìm gtnn của biểu thức q=1/2(x^10/y^2 + y^10/x^2)+1/4(x^16 + y^16) - (1+ x^2y^2 )^
tìm gtnn của biểu thức q=1/2(x^10/y^2 + y^10/x^2)+1/4(x^16 + y^16) - (1+ x^2y^2 )^2
ai giúp mk vs
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
cho x, y thỏa mãn : x^2/y + y^2/16 =36
Tìm GTNN,GTLN của S=x-y+2008
tìm GTNN của Q= \(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
cho x, y là 2 số dương và x+ y= 16. Tìm GTNN của M= (9/xy) + 17/ (x2+ y2)
M=9/xy+17/(x^2+y^2)=17/(x^2+y^2)+17/2xy+1/2xy=17.(1/x^2+y^2 + 1/2xy) + 1/2xy
Áp dụng bđt cauchy dạng 1/a+1/b >/ 4/(a+b) và ab </ [(a+b)/2]^2
Ta có M >/ 17.4/16^2 + 1/2.8^2 = 35/128=>minM=35/128
Đẳng thức xảy ra <=> x=y=8
Tìm GTNN của biểu thức Q= 1/2((x10/y2) + (y10/x2)) + 1/4(x16 +y16) - (1+x2y2)2
Cho x,y là 2 số thực thoả mãn x+y>0 và x^2+y^2+8xy/x+y=16
Tìm GTNN của Q=x^2-2x+4y+100
\(x^2+y^2+\frac{8xy}{x+y}=16\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4x^2+4y^2+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)
\(\Leftrightarrow x+y-4=0\)(vì \(x^2+y^2+4x+4y>0\))
\(\Leftrightarrow y=4-x\).
\(Q=x^2-2x+4y+100=x^2-2x+4\left(4-x\right)+100\)
\(=x^2-6x+116=\left(x-3\right)^2+107\ge107\)
Dấu \(=\)khi \(x=3\Rightarrow y=1\).
Tìm x và y biết GTNN của : B = | x2 - 16 | + | 169 - y2 | = 2015
Help Me !!! Tìm GTNN của các BT sau và GTNN của các BT ứng với x và y có quan hệ NTN
B= \(x^2+2xy+y^2+16\)
C=\(9x^2+6x+y^2+16\)
D=\(4^2+4x+5y^2+5x\)
Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).
Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).