Tính : x100+101x99+101x98+...+101x+2016 tại x=-100
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
bài 1 tính giá trị biểu thức
D=(x-y).(x^4+x^2y^2+x^3y+xy^3+x^4) tại x =-2
E= x2017-101x2016+101x2015-101x2014+.....+101x-9 tại x=100
bài 2 chứng minh gt của biểu thức k phụ thộc vào giá trị của biến
B=(x-1).(2x2+x+1)-(x-2).(2x2+3x+6)
A=x^15 -101x^14 + 101x^13-....-101x^2+ 101x +2020 tại x +100
Ta có x = 100
=> x + 1 = 101
Khi đó A = x15 - 101x14 + 101x13 - 101x12 + ... + 101x3 - 101x2 + 101x + 2020
= x15 - (x + 1)x14 + (x + 1)x13 - (x + 1)x12 + ... + (x + 1)x3 - (x + 1)x2 + (x + 1)x + 2020
= x15 - x15 - x14 + x14 + x13 - x13 - x12 + ... + x4 + x3 - x3 - x2 + x2 + x + 2020
= x + 2020
= 101 + 2020 (Vì x = 100)
= 2121
Vậy A = 2121 khi x = 100
A = x15 - 101x14 + 101x13 - ... - 101x2 + 101x + 2020 tại x = 100
x = 100 => 101 = x + 1
Thế vào A ta được
A = x15 - ( x + 1 )x14 + ( x + 1 )x13 - ... - ( x + 1 )x2 + ( x + 1 )x + 2020
= x15 - ( x15 + x14 ) + ( x14 + x13 ) - ... - ( x3 + x2 ) + ( x2 + x ) + 2020
= x15 - x15 - x14 + x14 + x13 - ... - x3 - x2 + x2 + x + 2020
= x + 2020
= 100 + 2020 = 2120
Bài làm :
Ta có :
x = 100
=> x + 1 = 101
Theo đề bài ; ta có :
A = x15 - 101x14 + 101x13 - 101x12 + ... + 101x3 - 101x2 + 101x + 2020
A = x15 - (x + 1)x14 + (x + 1)x13 - (x + 1)x12 + ... + (x + 1)x3 - (x + 1)x2 + (x + 1)x + 2020
A= x15 - x15 - x14 + x14 + x13 - x13 - x12 + ... + x4 + x3 - x3 - x2 + x2 + x + 2020
A= x + 2020
A= 100 + 2020
A= 2120
Vậy A = 2120
cho f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25.Tính f(100)
f(x)=101x^8-101x^7+101x^6-...+101x^2-101x+25 Tính f(100)
Cho đa thức f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25. Tính f(100)
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
Cho F(x) = x^8 -101x^7+101x^6-101x^5+...+101x^2-101x+25
Tính F(100)
Cho đa thức f(x) + x^8 - 101x^7+101x^6-101x^5+...+101x^2-101x+25 . Tính f(100)
cho f(x)= x^8-101x^7+106x^6-101x^5...+101x^2-101x+125 tính f(100)
Cho f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25
Tính f(100)
f(100)=> x=100
=>x+1=101
thay x+1=101 ta được:
f(100)=x8-(x+1)x7+(x+1)x6-(x+1)x5+...+(x+1)x2-(x+1)x+25
=x8-(x8+x7)+(x7+x6)-(x6+x5)+...+(x3+x2)-(x2+x)+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=-x+25
=-100+25
=-75