Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhoc Ti Dang Yeu
Xem chi tiết
Nguyễn Haara
19 tháng 3 2021 lúc 20:58

đề bài bị sai hay sao ấy ạ

 

Ngọc Phùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2023 lúc 19:39

a: Xét tứ giác AFCD có

E là trung điểm chung của AC và FD

=>AFCD là hình bình hành

b: EG//AB

AB\(\perp\)AC

Do đó: EG\(\perp\)AC

c: 

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

 

Vũ Đức Cường
Xem chi tiết
 ༚ Đông Hải ༚
31 tháng 1 2021 lúc 9:34

A B C E F K

a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)

mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )

Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )

TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)

=> \(\Delta EBK\)cân tại E

b , Đề bài thiếu :>

Khách vãng lai đã xóa
LÊ Gia Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 9 2021 lúc 22:16

a: Xét tứ giác BEFC có FE//BC

nên BEFC là hình thang

b: Xét tứ giác EFHK có 

A là trung điểm của đường chéo KF

A là trung điểm của đường chéo EH

Do đó: EFHK là hình bình hành

Suy ra: HK//EF

mà EF//BC

nên HK//BC

Xét tứ giác BCHK có HK//BC

nên BCHK là hình thang

Nguyen Viet Khanh
22 tháng 11 2021 lúc 17:27

a: Xét tứ giác BEFC có FE//BC

nên BEFC là hình thang

b: Xét tứ giác EFHK có 

A là trung điểm của đường chéo KF

A là trung điểm của đường chéo EH

Do đó: EFHK là hình bình hành

=> HK//EF

mà EF//BC

=> HK//BC

Xét tứ giác BCHK có:

HK//BC

=>BCHK là hình thang

Hiệp sĩ ánh sáng ( Boy l...
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2022 lúc 13:57

Bài 3: 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

Do đó; ΔAHB=ΔAKC

Suy ra: AH=AK và BH=CK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

MB=CN

góc M=góc N

Do đó ΔHBM=ΔKCN

Suy ra: góc HBM=góc KCN

=>góc OBC=góc OCB

hay ΔOBC can tại O

 

゚°☆Morgana ☆°゚ ( TCNTT )
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
TommyInit
7 tháng 5 2021 lúc 18:25
dài dữ vậy
Khách vãng lai đã xóa
Phạm Hải Yến
7 tháng 5 2021 lúc 21:51
Vì AH vuông góc với BC Độ dài AH là 12 D€ABvaf E€Ac
Khách vãng lai đã xóa
nguyen thu trang
Xem chi tiết
trinh lê
Xem chi tiết
Yen Nhi
20 tháng 3 2022 lúc 19:54

`Answer:`

undefined

a. Theo giả thiết: EI//AF

`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)

`=>\triangleEBI` cân ở `E`

`=>EB=EI`

b. Theo giải thiết: BE=CF=>EI=CF`

Xét `\triangleOEI` và `\triangleOCF:`

`EI=CF`

`\hat{OEI}=\hat{OFC}` 

`\hat{OIE}=\hat{OCF}`

`=>\triangleOEI=\triangleOFC(g.c.g)`

`=>OE=OF`

c. Ta có: `KB⊥AB` và `KC⊥AC`

`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`

`=>KB=KC`

Mà `BE=CF`

`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`

`=>KE=KF`

`=>\triangleEKF` cân ở `K`

Mà theo phần b. `OE=OF=>O` là trung điểm `EF`

`=>OK⊥EF`

Khách vãng lai đã xóa
Tuyết Ly
Xem chi tiết