cho a , b E N , a lẻ
CMR : phân số\(\frac{a}{ab+4}\) là phân số tối giản
1) Cho phân số tối giản a/b
a) cmr a-b/ab cũng tối giản
b) ab/(a^2 + b^2) cũng tối giản
2) tìm n để : n^4 + n + 1 là số nguyên tố
Câu 1
a) Tìm n nguyên để các biểu thức sau đạt giá trị nguyên : A \(\frac{2n-2}{2n+4}\)
b) Cho phân số \(\frac{a}{b}\) là phân số tối giản. Chứng tỏ phân số\(\frac{a}{a+b}\) là phân số tối giản
\(a)\) Ta có :
\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)
Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)
\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n+4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(\frac{-3}{2}\) | \(\frac{-5}{2}\) | \(-1\) | \(-3\) | \(\frac{-1}{2}\) | \(\frac{-7}{2}\) | \(1\) | \(-5\) |
Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)
Vậy \(n\in\left\{-5;-3;-1;1\right\}\)
Chúc bạn học tốt ~
b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Cho phân số a/b là phân số tối giản .Hỏi phân số a/ab+b có tối giản ko ?
Đáp án là có nha bạn .
cho phân số A=\(\frac{n+1}{n+3}\)(n E z,n khác 3) .Tìm n để A là phân số tối giản
Cho phân số \(\frac{a}{b}\) là phân số tối giản . Chứng tỏ rằng phân số \(\frac{a}{a+b}\) cũng là phân số tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Câu 3 : Cho phân số \(P=\frac{n+4}{2n-1}\)với n là số tự nhiên
a. Tìm số tự nhiên n để phân số P không tối giản
b. Tìm số tự nhiên n để phân số P là số nguyên tố
Câu 4 : Tìm số có hai chữ số ab sao cho ab = a + b2
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
Cho\(\frac{a}{b}\)là phân số tối giản (a,b thuộc \(N^{sao}\)).Chứng tỏ rằng \(\frac{a}{a+b}\)cũng là phân số tối giản.
Cho phân số \(\frac{a}{b}\)tối giản .Chứng minh phân số \(\frac{ab}{a^2+b^2}\)cũng là phân số tối giản
Giải chi tiết giùm mình nhé!
100 - 100 + 666 - 555 + 111 - 111 + 111 - 222
= 0 + 666 - 555 + 111 - 111 + 111 - 222
= 666 - 555 + 111 - 111 + 111 - 222
= 111 + 111 - 111 + 111 - 222
= 222 - 111 + 111 - 222
= 111 + 111 - 222
= 222 - 222
= 0
Chuc ban hoc tot
a) chứng minh phân số sau là tối giản \(\frac{3n-2}{4n-3}\)
b) cho A=\(\frac{n+1}{n-3}\)
+) tìm n để A là phân số
+) tim n de A la so nguyen
+) tìm n để A là phân số tối giản
a) gọi D là UCLN(3n-2;4n-3)
\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D
\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D
\(\Rightarrow\)(12n-9-12n+8) chia hết cho D
\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}
hay UCLN(3n-2;4n-3) \(\in\){1;-1}
chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản
b) +) để A là phân số thì n-3\(\ne\)0
=>n\(\ne\)3
+) ta có \(\frac{n+1}{n-3}\)= \(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)
để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên
=> 4 chia hết n-3
=> n-3 \(\in\)U(4)
mà U(4) = {-1;-2;-4;1;2;4}
ta có bảng
n-3 | -1 | -2 | -4 | 1 | 2 | 4 |
n | 2 | 1 | -1 | 4 | 5 | 7 |
vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên