Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Phương Thu
Xem chi tiết
Pé Jin
Xem chi tiết
Trần Tiến Minh
2 tháng 2 2016 lúc 16:24

Theo đề bài,ta có:x2-xy=-18 hay x(x-y)=-18. Mặt khác x-y =3 nên x=-18:3=-6

Nguyễn Vi Vi
Xem chi tiết
Nguyễn Văn Gia Thịnh
Xem chi tiết
Akai Haruma
30 tháng 9 2023 lúc 10:35

Lời giải:
Đặt $xy=a; x+y=b$ thì theo đề ta có:

$a+b=-1$ và $ab=-12$

Ta cần tính: $A=(x+y)^3-3xy(x+y)=b^3-3ab=b^3-3(-12)=b^3+36$
 

Từ $a+b=-1\Rightarrow a=-b-1$. Thay vào $ab=-12$
$\Rightarrow (-b-1)b=-12$
$\Leftrightarrow (b+1)b=12$

$\Leftrightarrow b^2+b-12=0$

$\Leftrightarrow (b-3)(b+4)=0$
$\Leftrightarrow b=3$ hoặc $b=-4$
Nếu $b=3$ thì $A=3^3+36=63$

Nếu $b=-4$ thì $A=(-4)^3+36=-28$

Demngayxaem
Xem chi tiết
Trà My
3 tháng 1 2017 lúc 10:07

Bài 2:

TH1: \(x\le-\frac{5}{2}\)

<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)

<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)

TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)

<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)

TH3: \(x>\frac{2}{5}\)

<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)

Vậy không có số x thỏa mãn đề bài

Trà My
3 tháng 1 2017 lúc 10:06

Bài 1:

Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Bài 3:

Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)

Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3

+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)

+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)

Vậy ...........

Nguyễn Võ Văn
Xem chi tiết
Nguyễn Thanh Mai
26 tháng 7 2015 lúc 18:09

có khùng hk vậy hùng tự đăng tự giải ls

 

Nguyễn Võ Văn
30 tháng 6 2015 lúc 13:39

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

Nguyễn Hữu Thế
30 tháng 6 2015 lúc 13:43

anh đang chia sẻ kiến thức đóa à

rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
quachtxuanhong23
Xem chi tiết
Đinh Thùy Linh
26 tháng 6 2016 lúc 7:39

\(x^2-xy=-18\Leftrightarrow x\left(x-y\right)=-18\Leftrightarrow x\cdot3=-18\Rightarrow x=-6\).

Lâm Đại Dương
26 tháng 6 2016 lúc 7:46

x^2 - xy=-18 (=) x.(x-y)=-18 (=)x.3=-18 (=)x=-6

o0o I am a studious pers...
26 tháng 6 2016 lúc 7:47

\(x^2-xy=-18\)

\(==>x\left(x+y\right)=-18\)

\(=>x.3=-18\)

\(=>x=-6\)

Vậy x thỏa mãn giá trị là : -6

T nha

hoangthithuyduong
Xem chi tiết
pham trung thanh
23 tháng 11 2017 lúc 11:45

\(A=x^4+y^4\)

\(=\left(x^4+2x^2y^2+y^4\right)-2x^2y^2\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)  (*)

Thay xy=5 và x2+y2=18 vào (*), ta có

\(A=18^2-2.5^2\)

\(=324-50\)

\(=274\)

Vậy A=274