cho tam giác ABC cân tại A có AC=4,8 cm; đường cao AH,M là trung điểm cạnh AC
a) tính độ dài đoạn thẳng HM
B) Gọi K là điểm đối xứng của H qua M. Tứ giác AKCH là hình gì? vì sao?
cho tam giác ABC cân tại A có AB = 4 cm , BC = 4,8 cm nội tiếp đường tròn tâm O . tính bán kính của đường tròn đó .
Cho tam giác ABC vuông tại A có cạnh AC= 8cm, đường cao AH=4,8 cm. Hãy tính độ dài các cạnh và diện tích của tam giác ABC.
Giup minh voi ạ!!!!
Xét tam giác HAC vuông tại H có
HC=\(\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4\)(cm)
Xét tam giác ABC có AH là đường cao
\(\Rightarrow AH^2=HC.BH\Rightarrow BH=\dfrac{AH^2}{HC}=\dfrac{4,8^2}{6,4}=3,6\)(cm)
=> BC=BH+HC=6,4+3,6=10(cm)
Ta có\(AH.BC=AC.AB\Rightarrow AB=\dfrac{AH.BC}{AC}=\dfrac{4,8.10}{8}=6\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.8.6=24\left(cm^2\right)\)
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Cho tam giác ABC có A= 75 độ,BH vuông góc với AC tại H, BH=1/2*AC. Cm tam giác ABC cân
Cho tam giác ABC có A= 75 độ,BH vuông góc với AC tại H, BH=1/2*AC. Cm tam giác ABC cân
Cho tam giác ABC có AB < AC . Trên AC lấy M sao cho CM = AB . Vẽ đường trung trực cắt của AC cắt tia phân giác của góc A tại O . CM :
a) Tam giác OAC cân
b) Tam giác OBM cân
c) Cho AC = 3√2
cm ; OA = 3 cm
CMR tam giác ABC là tam giác vuông
a) Gọi trung điểm của AC là H.
Xét tam giác AOH và COH có:
AH = CH (gt)
OH chung
\(\widehat{AHO}=\widehat{CHO}=90^o\)
\(\Rightarrow\Delta AOH=\Delta COH\) (Hai cạnh góc vuông)
\(\Rightarrow OA=OC\) (Hai cạnh tương ứng)
Hay tam giác OAC cân tại O.
b) Xét tam giác ABO và tam giác AMO có:
AB = AM (gt)
Cạnh AO chung
\(\widehat{BAO}=\widehat{MAO}\) (Do AO là tia phân giác góc A)
\(\Rightarrow\Delta ABO=\Delta AMO\left(c-g-c\right)\Rightarrow OB=OM\)
Hay tam giác OMB cân tại O.
c) Ta có \(AH=\frac{AC}{2}=\frac{3\sqrt{2}}{2}\left(cm\right)\)
Xét tam giác vuông AOH, áp dụng định lý Pi-ta-go ta có:
\(OH^2=AO^2-AH^2=3^2-\left(\frac{3\sqrt{2}}{2}\right)^2=\frac{9}{2}\)
\(\Rightarrow OH=\frac{3\sqrt{2}}{2}=AH\)
Vậy ta giác OAH vuông cân tại H. Suy ra \(\widehat{OAH}=45^o\Rightarrow\widehat{BAC}=2.45^o=90^o\)
Vậy tam giác ABC vuông tại A.
CHO TAM GIÁC ABC CÓ GÓC A < 60 ĐỘ , AB<AC . VẼ RA NGOÀI TAM GIÁC CÁC TAM GIÁC ABM VUÔNG CÂN TẠI A , TAM GIÁC ACN VUÔNG CÂN TẠI A .
a Cm CM BẰNG BN
b Cm BN VUÔNG GỐC VỚI MC
Cho tam giác ABC cân tại A có AB = AC = 6cm ; BC = 4cm . Các đường phân giác BD và CE cắt nhau tại I ( E trên AB và D trên AC )
a) Tính độ dài AD , ED
b) Cm : Tam giác ADB đồng dạng với tam giác AEC
c) Cm : IE.CD = ID.BE
d) Cho \(S_{ABC}\) = 60 \(cm^2\) . Tính \(S_{AED}\)
b: Xét ΔADB và ΔAEC có
\(\widehat{A}\) chung
\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)
Do đó: ΔADB\(\sim\)ΔAEC
cho tam giác ABC cân tại A . Vẽ AH vuông góc BC . a, CM tam giác AHB = tam giác AHC . b, Vẽ HM vuông góc AB , HN vuông góc AC . CM tam giác AMN cân . c, CM MN // BC . Có vẽ hình nha mọi người
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.