Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Phúc
Xem chi tiết
Vũ Sơn Tùng
Xem chi tiết
Akai Haruma
24 tháng 5 2018 lúc 15:52

Lời giải:

Ta có:

\(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0+0+0=0\)

\(\Leftrightarrow (x^2+2x+1)+(y^2+2y+1)+(z^2+2z+1)=0\)

\(\Leftrightarrow (x+1)^2+(y+1)^2+(z+1)^2=0(*)\)

Ta thấy rằng \(\left\{\begin{matrix} (x+1)^2\geq 0\\ (y+1)^2\geq 0\\ (z+1)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

Do đó để $(*)$ xảy ra thì \((x+1)^2=(y+1)^2=(z+1)^2=0\)

\(\Leftrightarrow x=y=z=-1\)

Thử lại thấy thỏa mãn

Vậy \(x^{2017}+y^{2017}+z^{2017}=(-1)^{2017}.3=-3\)

Yoshimori Simimura
Xem chi tiết
Họ Và Tên
Xem chi tiết
Lê Anh
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Inequalities
27 tháng 10 2020 lúc 19:41

Câu hỏi của Lê Tài Bảo Châu - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Nguyễn Lê Phương Thảo
Xem chi tiết
Ko Quan Tâm
13 tháng 2 2016 lúc 15:23

ủng hộ mình lên 360 điểm nha các bạn

phạm minh tâm
Xem chi tiết