Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trung Lâm
Xem chi tiết
Trần Thị Ngọc Dung
28 tháng 8 2022 lúc 18:57

Vì tui dùng app giải

The Rich
Xem chi tiết
Bi Bi
Xem chi tiết
Vũ Cẩm Tú
3 tháng 6 2019 lúc 11:29

Ta có \(\frac{1}{k^2}=\frac{4}{4k^2}< \frac{4}{4k^2-1}=2\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\left(k\in N\cdot\right)\)

Khi đó \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\left(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\right)\\ =2\left(\frac{1}{3}-\frac{1}{2n+1}\right)< \frac{2}{3}\)

NguyenVietDung
Xem chi tiết
Thanh Tùng DZ
29 tháng 5 2017 lúc 21:10

Ta có :

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+...+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

nguyển văn hải
29 tháng 5 2017 lúc 21:12

ta có 100-(1+1/2+1/3+.....+1/100)

=(1+1+1......1)(99 số 1)-(1+1/2+1/3+......+1/100)

=(1-1)+(1-1/2)+(1-1/3)+.......+(1-1/100)

=1/2+2/3+3/4+.....+99/100

nguyển văn hải
29 tháng 5 2017 lúc 21:14

mình đọc nhầm đề nha

The Rich
Xem chi tiết
ShinNosuke
Xem chi tiết
#Tiểu_Bối#
3 tháng 5 2019 lúc 12:36

a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :

12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d

30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d

-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d

=> 1 chia hết cho d

vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau

=> \(\frac{12n+1}{30n+2}\)là phân số tối giản

#Tiểu_Bối#
3 tháng 5 2019 lúc 12:44

b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Xem chi tiết
Nguyễn Thị Ngọc Thơ
9 tháng 5 2019 lúc 12:06

Ta có:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)

giúp mk vs các bạn ưi ! mk đang cần gấp ai nhanh mik tích cho !nhanh nha help me!thank nhìu

Hân
Xem chi tiết
vu duc huy
Xem chi tiết
Minh Tâm
6 tháng 3 2020 lúc 19:56

Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2010^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};....;\frac{1}{2010^2}< \frac{1}{2009\cdot2010}\)

=> A<\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2009\cdot2010}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2009}-\frac{2}{2010}\)

\(\Leftrightarrow A< 1-\frac{1}{2010}\)

<=> A<1 (đpcm)

Khách vãng lai đã xóa
Lê Thị Nhung
6 tháng 3 2020 lúc 20:20

Ta có \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

Cộng vế các BĐT trên ta được

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< 1-\frac{1}{2010}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< 1\)

Khách vãng lai đã xóa