Tìm các số nguyên dương x,y,z thỏa mã x+3=2^y và 3x+1=4^z
tìm các số nguyên dương x, y, z thỏa mãn x+3=2^y và 3x+1=4^z
Tìm tất cả các số nguyên dương x, y, z thỏa mãn: x + 3 = 2^y và 3x + 1 = 4^z
tìm các số nguyên dương x, y, z thỏa mãn x+3=2^y và 3x+1=4^z
ai nhanh nhất 1tk
C).(0,5 diem) 5 các số nguyên dương x, y, z thỏa tìm tất cả các số nguyên dương thỏa manc mãn: (2z - 4x)/3 = (3x - 2y)/4 = (4y - 3z)/2 và 200 < y ^ 2 + z ^ 2 < 450
Ta có: \(\frac{2z-4x}{3}=\frac{3x-2y}{4}=\frac{4y-3z}{2}\)
=>\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x+12x-8y+8y-6z}{9+16+4}=0\)
=>6z-12x=0 và 12x-8y=0 và 8y-6z=0
=>12x=8y=6z
=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=>x=2k; y=3k; z=4k(Với k∈N*)
\(200
=>\(200<\left(3k\right)^2+\left(4k\right)^2<450\)
=>\(200<25k^2<450\)
=>\(8
mà k là số nguyên dương
nên k∈{3;4}
TH1: k=3
=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)
TH2: k=4
=>\(\begin{cases}x=2\cdot4=8\\ y=3\cdot4=12\\ z=4\cdot4=16\end{cases}\)
Tìm tất cả các số nguyên dương x,y,z thỏa mãn x+3=2y và 3x+1=4z
Tìm tất cả các số nguyên dương x, y, z thỏa mãn: x + 3 = 2^y và 3x + 1 = 4z
Timfcacs số nguyên dương x, y, z thỏa mãn x+ 3 = 2^y và 3x +1 = 4^z
Tìm tất cả các số nguyên dương x,y,z thỏa mãn phương trình:
\(x^6+y^6+15y^4+z^3+75y^2=3x^2y^2z+15x^2z-125\)
\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)
\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)
Ta có:
\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)
Đẳng thức xảy ra khi và chỉ khi:
\(x^2=y^2+5=z\)
Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)
\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:
\(\left(x;y;z\right)=\left(3;2;9\right)\)
Tìm các số x, y, z nguyên dương thỏa mãn: x3+ 3x2+ 5= 5y và x+ 3= 5z.
Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath