Chứng minh rằng tồn tại duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Mọi người giúp mk bài này đc ko, mk đang cần gấp:
Chứng minh rằng tồn tại duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.
Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.
Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (k ∈ N)
+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.
+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.
=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự nhiên lẻ liên tiếp là số nguyên tố
Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
Chứng minh rằng có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
Gọi 2k+1,2k+3,2k+52k+1,2k+3,2k+5 là 3 số tự nhiên lẻ liên tiếp
+) Nếu kk chia hết cho 3 →2k+3→2k+3 chia hết cho 3
+) Nếu kk chia 3 dư 1 →2k+1→2k+1 chia hết cho 3
+) Nếu kk chia 3 dư 2 →2k+5→2k+5 chia hết cho 3
→→ 3 tự nhiên lẻ tiên tiếp luôn tồn tại 1 số chia hết cho 3
→→ Nếu k=1→3,5,7k=1→3,5,7 là số nguyên tố
+)Nếu k>1→2k+1,2k+3,2k+5k>1→2k+1,2k+3,2k+5 là 3 số tự nhiên lớn hơn 3 do trong 3 số luôn tồn tại 1 số chia hết cho 3 suy ra số đó là hợp số →k>1→k>1 không có bộ 3 số nào thỏa mãn đề
Gọi 3 số tự nhiên lẻ liên tiếp là : p ; p+2 ; p+4
Với p=2 => p+2=4
Vì 4 là hợp số nên p là số nguyên tố khác 2
Với p=3 => p+2=5 => p+4=7
Vì 3, 5 và 7 là các số nguyên tố
=> 3, 5 và 7 là bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
p lớn hơn hoặc bằng 3 => p bằng 3k+1 hoặc 3k+2 (k là số tự nhiên khác 0)
Với p=3k+1 => p+2=3k+3 chia hết cho 3 (là hợp số nên loại)
Với p=3k+2 => p+4=3k+6 chia hết cho 3 (là hợp số nên loại)
=> Chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Vậy chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố.
Chúc bạn học tốt!
#Huyền#
Chứng minh rằng có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
là sao ?
Chứng minh rằng :
a) 2 và 3 là hai số tự nhiên liên tiếp đều là số nguyên tố.
b) 3,5,7 là ba số lẻ liên tiếp đểu là số nguyên tố.
Ban lam giup minh
Tinh nhanh lop 4
42 x 43 - 12 x 9 - 42 x 3
Chứng minh rằng với mọi số tự nhiên n luôn tồn tại n số tự nhiên liên tiếp không là số nguyên tố
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...
Chứng minh rằng với mọi số tự nhiên n luôn tồn tại n số tự nhiên liên tiếp không là số nguyên tố
Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).
Khoảng này có \(n\)số tự nhiên.
Với \(k\)bất kì \(k=\overline{2,n+1}\)thì
\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố.
Do đó ta có đpcm.
chứng minh rằng không tồn tại 3 số lẻ liên tiếp lớn hơn 7 đồng thời là 3 số nguyên tố
vì trong 3 số lẻ lt chắc chắn có 1 số chi hết cho 3
suy ra trong 3 số lẻ lt >7 thì tồn tại 1 trong 3 số chia hết cho 3 và có thương >2
vì tròg 3 số lẻ liên tiếp tồn tại 1 số chia hết cho 3
suy ra 1 trong 3 số lẻ liên tiếp >7 có 1 số chia hết cho 3 và có thương > 1
vậy ko có trường hợp như trong đề bài (dpcm)