Số các số nguyên dương x thỏa mãn \(\frac{x}{4}=\frac{197}{x+2}\)là ...
số các số nguyên dương x thỏa mãn \(\frac{x}{4}=\frac{197}{x+2}\)
\(\frac{x}{4}=\frac{197}{x+2}\Rightarrow x^2+2=197.4\)
=>x2+2=788
=>x2=???
ta có: x/4=197/x+2 suy ra
x(x+2)=197x4
x^2+2x=788
x(x+2)=788
......
Ta có tính chất 'tích trung tỉ bằng tích ngoại tỉ' (tử này nhân với mẫu kia bằng mẫu này nhân với tử kia)
=> x(x+2) = 197 . 4
=> x2 + 2 = 788
=> x2 = 786
=> x = 28 (xấp xỉ 28)
1.số cặp (x;y) nguyên dương thỏa mãn x^2 + y^2 =13 là ..
2.Tập hợp các số nguyên x thỏa mãn \(\frac{3}{x+2}\)= \(\frac{x+2}{3}\) là {.....}
(Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu ";")
3.Cặp số nguyên dương (x;y) thỏa mãn |(x^2 + 3) (y+1)|=16 là (x;y) (....)
(Nhập các giá trị theo thứ tự,cách nhau bởi dấu ";" )
đố vui
1 ơi + 2 ơi = bằng mấy ơi ?
đây là những câu đố vui sau những ngày học mệt nhọc
4 ơi??? hay 5 ơi, mjk hok bjk chịu thua nèk, pn ns đi Anh Nguyễn Lê Quan
chỉ có 1 cặp thôi là 2^2 +3^2=13
Tìm các số nguyên dương x,y thỏa mãn: \(\frac{x^2}{2xy^2-y^3+1}\)là 1 số nguyên dương
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm các số nguyên dương x,y thỏa mãn: \(\frac{x^2}{2xy^2-y^3+1}\) là một số nguyên dương
Gắt thế,IMO 2003
Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)
Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn
Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)
\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)
Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương
Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)
\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)
Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)
Vậy.........................
a, 4(x+y+z) = xyz
b, x+y+z -9- -xyz = 0
2.Tìm các số nguyên dương x,y,z,t thỏa mãn:
5(x+y+z+t)+10= 2xyzt
3.Tìm các số nguyên dương x,y,z,t thỏa mãn:
\(\frac{1}{^{x^2}}\)+\(\frac{1}{y^2}\)+\(\frac{1}{z^2}\)+\(\frac{1}{t^2}\)= 1
Bạn nào trả lời nhanh, đúng : mk chọn.
1 : Số các số nguyên ( x ; y ) thỏa mãn ( x - 1 )^2 = 3 là : .....
2 : Số các số nguyên dương x thỏa mãn x/4 = 197/x + 2 là : ....
3 : Giá trị nhỏ nhất của A = giá trị tuỵt đối của x + 3 + giá trị tuyệt đối của x - 7 là : ....
4 : Số các số nguyên của x để P = giá trị tuyệt đối của 3x - 18 - giải trị tuyệt đối của 3x + 7 là : .....
5 : Số bộ ba số nguyên tố ( a ; b ; c ) khcs nhau mà a.b.c < a.b +b.c +a.c là ?
1) Có những cặp số nguyên nào thỏa mãn x.y=x+y
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
Cho x,y là các số nguyên dương thỏa mãn \(\frac{4^x}{2^{x+y}}=8\)và \(\frac{9^{x+y}}{3^{5y}}=243\) giá trị của x.y= ?