Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Công Chúa Bloom Lửa Rồng
Xem chi tiết
ngô thị duyen
Xem chi tiết
Phạm Kỳ Anh
Xem chi tiết
Oanh Trần
Xem chi tiết
Oanh Trần
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 0:29

a) Vì tam giác ABC cân tại A

\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)

b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:

\(\widehat{A}\) chung

AB = AC

\(\widehat {ABF} = \widehat {ACE}\)

\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )

\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)

\( \Rightarrow \Delta AEF\) cân tại A

c) Xét tam giác IBC có :

\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)

Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )

\( \Rightarrow IB = IC\)( cạnh tương ứng )

Vì EC = BF ( câu b) và IB = IC

\( \Rightarrow \) EC – IC = BF – BI

\( \Rightarrow \) EI = FI

\( \Rightarrow \Delta IEF\) cân tại I

Lê Hoàng Tài
Xem chi tiết
Lê Khôi Mạnh
10 tháng 1 2018 lúc 22:12


A B c F E I

Lê Khôi Mạnh
10 tháng 1 2018 lúc 22:15

BÀI NÀY KO KHÓ LẮM 

BẠN CHỈ CẦN ÁP DỤNG NHỮNG T/C CỦA TAM GIÁC CÂN VÀ XÉT CÁC TAM GIAC BẰNG NHAU

nguyen thi tu trinh
Xem chi tiết
Doraemon
9 tháng 9 2018 lúc 10:26

Ta có hình vẽ:

A B C D E F I

Kẻ \(ID\perp AB,IE\perp BC,IF\perp AC\)

Xét hai tam giác vuông IDB và IEB, ta có:

     \(\widehat{IDB}=\widehat{IEB}=90^o\)

     \(\widehat{DBI}=\widehat{EBI}\left(gt\right)\)

     BI là cạnh huyền trung

    \(\Rightarrow\Delta IDB=\Delta IEB\)(cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng) (1)

Xét hai tam giác vuông IEC và IFC, ta có:

     \(\widehat{IEC}=\widehat{IFC}=90^o\)

     \(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)

     CI là cạnh huyền trung

     \(\Rightarrow\Delta IEC=\Delta IFC\: \)(cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng) (2)

Từ (1) và (2), suy ra: ID = IF

Xét tam giác vuông IDA và IFA, ta có:

      \(\widehat{IDA}=\widehat{IFA}=90^o\)

      ID = IF (chứng minh trên)

      AI là cạnh huyền trung

Suy ra: \(\Delta IDA=\Delta IFA\)(cạnh huyền, cạnh góc vuông)

Suy ra: \(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)

Vậy AI là tia phân giác của \(\widehat{A}\)

Doraemon
9 tháng 9 2018 lúc 10:28

Hoặc bạn kham khảo tại link:

Câu 100 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1: Chứng minh ...
Đức Khải Vũ Đỗ
Xem chi tiết