Kết quả bài toán :A={1-[1:(1+2)]} {1-[1:(1+2+3)]} {1-[1:(1+2+3+4)]} {1-[1:(1+2+3+4+5)]}….. {1-[1:(1+2+…+2014)]}
Tính (2014:2016).A=?
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
Cho A= 1/2+1/3+1/4+..+1/2016
B= 2015/1+2014/2+2013/3+....+2/2014+1/2015. Tính B/A
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2016 + 2/2015 +3/2014+ ...+ 2015/2 + 2016/1 Tính B : A
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Cho A = 1/2 + 1/3 + 1/4 + ...+ 1/2016
B = 1/2015 + 2/2014 + 3/2013 + ... + 2014/2 + 2015/1
Tính B : A
\(B=\left(\dfrac{1}{2015}+1\right)+\left(\dfrac{2}{2014}+1\right)+\left(\dfrac{3}{2013}+1\right)+...+\left(\dfrac{2014}{2}+1\right)+1\)
\(=\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2016}\)
=>B:A=2016
tính nhanh
A=1+3-5+7-..........-2013+2015
B=1-2+3-4+...................2015-2016
C=1-2-3+4+5-6-6+8+...........+2013-2014-2015+2016
D=1-4+7-10+.....-2014+2017
E=1+2-3-3+5+6 -.......+2013+2014-2015-2016
F=1-2+3-4+..........+2015+2016
G=1+3-5-7+9+11.............-2013-2015
H=1-2-34+5-6-7+8+.................+1013-1014-1015+1016
chị kết bạn với em nha gửi lời kết bn với em nhé
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2016
B = 1/2015 + 2/2014 + 3/2013 + ... + 2014/2 + 2015/1
Tính B ÷ A
Bài 1: tính tổng
a)1+2-3-4+5+6-7-8+...+ 2013 -2014- 2015- 2016
b)1-2-3-4+5+6-7-8+...+2013+2014-2015-2016
bài 2: rút gọn
a) (a+b- c)-(b+c-a)-(c+a-b)×(a+b -c)
b) (a+b)+(b-c)+(c-a )
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2015 + 2/2014 +3/2013 + ...+ 2015/2 + 2016/1 Tính B : A
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
tính kết quả
\(\frac{1}{2016}-\frac{1}{2016}.2015-\frac{1}{2015}.2014-\frac{1}{2014}.2013-...-\frac{1}{3}.2-\frac{1}{2}.1\)