Tìm giá trị nhỏ nhất của các số 368abc để nó chia hết cho 3,4 và 25 .
1) Cho A= 4n+1/2n+3. Tìm n thuộc số nguyên để:
a) A là 1 số nguyên của A
b) Tìm giá trị lớn nhất và nhỏ nhất của A
2) Tìm số nguyên dương n nhỏ nhất sao cho ta có cách thêm n chữ số sau số đó để số chia hết cho 39
3) Tìm giá trị lớn nhất của thương 1 số tự nhiên có 3 chữ số và tổng các chữ số của nó
4) Tìm giá trị nhỏ nhất của hiệu giữa 1 số tự nhiên có 2 chữ số và tổng ấc chữ số của nó
a ) cmr nếu tổng của 2 số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
b ) Tìm các giá trị của x để biểu thức :
P= (x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
a/ chứng minh rằng nếu tổng cảu hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
b/ tìm các giá trị của x để biểu thức: P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
tự biên tự diễn thôi:
a/ gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3
ta có a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]= (a+b)[(a+b)^2-3ab]0,5
vì a+b chia hết cho 3 nên (a+b)^2-3ab chia hết cho 3
do vậy (a+b)[(a+b)^2-3ab] chia hết cho 3
ai làm câu b
Thương trong phép chia một số có hai chữ số cho tổng các chữ số của nó là K . Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của K
a,tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1 chia cho 4 dư 2 chia cho 5 dư 3 chia cho 6 dư 4 và chia hết cho 11 ?
b, Tìm các giá trị nguyên của n để phân số A=3n+2/n-1 có giá trị là số nguyên ?
Tìm số tự nhiên nhỏ nhất khác 0 mà khi nhân nó với 135 ta được một số chính phương:
Giá trị của x và y để biểu thức A= |x + 15| +|-25-y| - 79 đạt giá trị nhỏ nhất là ?
1.tìm giá trị của x,y thỏa mãn (5/x)=(1/6)+(y/3)
2.tìm giá trị x nhỏ nhất thỏa mãn x chia hết cho 9 và x+1 chia hết cho 25
Viết chương trình nhập vào mảng A gồm n nhỏ 1 = 100 các số nguyên tử sau a) tính tích các số chia hết cho 3 b)in ra màn hình giá trị nhỏ nhất chia hết cho 3 và chỉ số của nó c) in ra màn hình các phần tử của mảng đó theo thứ tự ngược lại
uses crt;
var a:array[1..100]of integer;
n,i,t,nn,kt:integer;
begin
clrscr;
readln(n);
for i:=1 to n do readln(a[i]);
t:=1;
for i:=1 to n do
if a[i] mod 3=0 then t:=t*a[i];
writeln(t);
kt:=0;
nn:=32567;
for i:=1 to n do
if a[i] mod 3=0 then
begin
if nn>a[i] then nn:=a[i];
kt:=1;
end;
if kt=0 then writeln('Khong co so chia het cho 3')
else writeln('So nho nhat chia het cho 3 la: ',nn);
for i:=1 to n do
if nn=a[i] then write(i:4);
writeln;
for i:=n downto 1 do
write(a[i]:4);
readln;
end.
a)tìm giá trị nhỏ nhất của biểu thức:A=x2-4xy+5y2+10x-22y+28
b)tìm n để đa thức 3x3+10x2-5+n chia hết cho đa thức 3x+1
c)tìm tất cả các số nguyên n để 2n2+n-7 chia hết cho n-2
\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)
Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)
\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)
\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)