Cho phân số A=\(\frac{n+1}{n-2}\)
a/Tìm n\(\in\) Z để A có giá trị nguyên b/ Tìm n\(\in\) Z để A có giá trị lớn nhất
Cho phân số : A = \(\frac{2n+1}{n-2}\)
a) Tìm n thuộc Z để A có giá trị nguyên .
b) Tìm n thuộc Z để A có giá trị lớn nhất .
c) Tìm n thuộc Z để A có giá trị nhỏ nhất .
d) Tìm n thuộc Z để A có giá trị âm .
Cho phân số: A= \(\frac{n+1}{n-2}\)
a, Tìm \(n\in Z\) để A có giá trị nguyên
b,Tìm \(n\in Z\) để A có giá trị lón nhất
\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)
Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên
\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3
\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)
\(n-2=1\Rightarrow n=1+2=3\)
\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)
\(n-2=3\Rightarrow n=3+2=5\)
\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)
Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số
Xin lổi
Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé
a) Ta có : \(\frac{n+1}{n-2}=\frac{\left(n-2\right)+2+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để \(n+1⋮n-2\Leftrightarrow\frac{3}{n-2}\in Z\Leftrightarrow3⋮n-2\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
* Với n - 2 = 1 => n = 2 +1 = 3 ( thỏa mãn )
* Với n - 2 = -1 => n = -1 + 2 = 1 ( thỏa mãn )
* Với n - 2 = 3 => n = 3 + 2 = 5 ( thỏa mãn )
* Với n - 2 = -3 => -3 + 2 = -1 ( thỏa mãn )
Vậy với \(n\in\left\{3;1;5;-1\right\}\)thì A có giá trị số nguyên
b) Để A có giá trị lớn nhất thì n = 3
Cho phân số : A = \(\frac{n+1}{n-2}\)
a ) Tìm n thuộc Z để A có giá trị nguyên .
b) Tìm n thuộc Z để A có giá trị lớn nhất .
\(A=\frac{n+1}{n-2}\)
\(A=\frac{n-2+3}{n-2}\)
\(A=1+\frac{3}{n-2}\)
\(\Leftrightarrow n-2\inƯ\left(3\right)\)
\(\Leftrightarrow n-2\in\left\{\pm1;\pm3\right\}\)
đến đây lập bảng là xong
Cho phân số: \(A=\frac{6n-1}{3n+2}\)
a) Tìm n\(\in\)Z để A có giá trị nguyên
b) Tìm n\(\in\)Z để A có giá trị nhỏ nhất
\(b)\) Ta có :
\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại )
Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Rightarrow\)\(3n=-1\)
\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) )
\(\Rightarrow\)\(3n+2=2\)
\(\Rightarrow\)\(3n=0\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)
Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\inℤ\) thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)
Vậy \(n=1\) hoặc \(n=-1\)
Chúc bạn học tốt ~
Cho phân số A=n+1/n-2:
a,Tìm N∈Z để A có giá trị nguyên.
b,Tìm n∈Z để A có giá trị lớn nhất
Để A là số nguyên thì n + 1 chia hết n - 2
<=> n - 2 + 3 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-1;1;3;5}
Để A là số nguyên thì n + 1 chia hết cho n - 2
=> n - 2 + 3 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-1;1;3;5}
a, \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để A có giá trị nguyên <=> n - 2 thuộc Ư(3) = {1;-1;3;-3}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 3 => n = 5
n - 2 = -3 => n = -1
Vậy n = {3;1;5;-1}
b, \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{3}{n-2}\)đạt giá trị lớn nhất
=> n - 2 là số nguyên dương nhỏ nhất
=> n - 2 = 1 => n = 3
Khi đó \(A=\frac{n+1}{n-2}=\frac{3+1}{3-2}=\frac{4}{1}=4\)
Vậy GTLN của A là 4 khi n = 3
1. cho phân số B = \(\frac{n+1}{n-2}\)
a) tìm n thuộc Z để B có giá trị nguyên
b) tìm n thuộc Z để B có giá trị lớn nhất
B là số nguyên thì n+1 chia hết n-2
(n+1)-(n-2)chia hết n-2
n+1-n+2chia hết n-2
3chia hết n-2
n-2 thuộc Ư(3)={-1;1;-3;3}
n thuộc {1;3;-1;5}
B=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+3/n-2
để B lớn nhất 3/n-2 lớn nhất
nên n-2 bé nhất
n-2 là số nguyên dương bé nhất
=> n-2=1
n=3
a)Ta có B=\(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}.\)
Để B có giá trị nguyên thì \(\frac{3}{n-2}\)có giá trị nguyên
3 chia hết cho n-2
n-2 thuộc Ư(3)=-1;1;-3;3
n-2=-1 ; n=1
n-2=1 ; n=3
n-2=-3 ; n=-1
n-2=3 ; n=5
Vậy ...
cho phân số A=n + 1/n-2
a) tìm n thuộc Z để A có giá trị nguyên
b) tìm n thuộc Z để A có giá trị lớn nhất
cho mình hỏi :
cho phân số A=n+1/n-2
a) tìm n thuộc Z để A có giá trị nguyên
b)tìm n thuộc Z để A có giá trị lớn nhất
ta có \(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nguyên thì n-2 là ước của 3 hay
\(n-2\in\left\{\pm1,\pm3\right\}\Leftrightarrow n\in\left\{-1,1,3,5\right\}\)
Để A có giá trị lớn nhất thì \(\frac{3}{n-2}\) đạt giá trị lớn nhất.
khi \(n-2>0\) và đạt giá trị nhỏ nhất
hay n=3.
cho phân số A=n+1/n-2
tìm n thuộc z để A thuộc giá trị nguyên N
tìm n thuộc z để A có giá trị lớn nhất
a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
b, Ta có : \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)
Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3
Vậy GTLN A là 1 khi n = 3