Cho hình thang cân ABCD (AB//CD). Gọi M,N,P,Q theo thứ tự là trung điểm các cạnh AB; BC; CD và DA. Chứng minh tứ giác ABCD là hình thoi
Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q theo thứ tự là trung điểm của AB, AC, CD, BD. Nếu ABCD là hình thang cân thì tứ giác MNPQ là hình gì? Vì sao?
MNPQ là hình thoi vì là hình bình hành có hai cạnh kề bằng nhau.
Cho hình thang ABCD ( AB//CD). Gọi M;N;P;Q theo thứ tự là trung điểm của các cạnh AB;AC;CD;BD.
a/ Tứ giác MNPQ là hình gì?
b/ Tìm điều kiện của hình thang ABCD để MNPQ là hình thoi?
c/ Khi ABCD là hình thang cân có hai đường chéo vuông góc thì MNPQ là hình gì?
a / hình bình hành
b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD
c/hình vuông
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
Do AI, DI lần lượt là phân giác BADˆ;ADCˆ→IADˆ=BADˆ2 và IDAˆ=ADCˆ2
Ta có AIDˆ=180o−(IADˆ+IDAˆ)=180o−BADˆ+ADCˆ2=180o−180o2=90o
Xét Δ AID vuông tại I có IM là trung tuyến thuộc cạnh huyền AD MA=MI
=> Δ AMI cân tại M => MAIˆ=MIAˆ
Do MAIˆ=BAIˆ→BAIˆ=MIAˆ
Mà 2 góc ở vị trí so le trong MI // AB (1)
Tương tự có NJ // AB (2)
Lại có MN // AB (3) ( MN là đường trung bình của hình thang ABCD )
Từ (1); (2) và (3)=> M, N, I, J thẳng hàng.
Cho hình thang cân ABCD (AB//CD). Gọi E là trung điểm của cạnh AB. Gọi I, K, M theo thứ tự là trung điểm của BC, CD, DA. EIKM là hình j??? vì saoo??
Xét ΔBAC có BE/BA=BI/BC
nên EI//AC và EI=AC/2
Xét ΔDAC có DK/DC=DM/DA
nên KM//AC và KM=AC/2
=>EI//KM và EI=KM
Xét ΔABD có AE/AB=AM/AD
nên EM//BD và EM=BD/2=AC/2=EI
Xét tứ giác EIKM có
EI//KM
EI=KM
EM=EI
Do đó: EIKM là hình thoi
Cho hình thang cân ABCD( AB // CD). Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ?
Trong ∆ ABD ta có:
E là trung điểm của AB (gt)
H là trung điểm của AD (gt)
nên EH là đường trung bình của ∆ ABD
⇒ EH // BD và EH = 1/2 BD (tính chất đường trung bình của tam giác) (1)
- Trong ∆ CBD ta có:
F là trung điểm của BC (gt)
G là trung điểm của CD (gt)
nên FG là đường trung bình của ∆ CBD
⇒ FG // BD và FG = 1/2 BD (tính chất đường trung bình của tam giác) (2)
Từ (1) và (2) suy ra: EH // FG và EH = FG
Suy ra: Tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
Trong ∆ ABC ta có:
EF là đường trung bình
⇒ EF = 1/2 AC (tính chất đường trung bình của tam giác) (3)
AC = BD (tính chất hình thang cân) (4)
Từ (1), (3) và (4) suy ra: EH = EF
Vậy : Tứ giác EFGH là hình thoi.
Cho hình thang cân ABCD (AB // CD). Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ?
Cho hình thang ABCD(AB//CD,AB<CD). Gọi N , Q theo thứ tự là trung điểm của các cạnh AB ,CD. P là giao điểm của AC và BD, M là giao điểm của hai đường thẳng AD và BC. CMR:
a) AD , BC và QN đồng quy
b) M,N,P,Q thẳng hàng
Cho hình thang cân ABCD (AB//CD). Gọi M,N,P,Q theo thứ tự là trung điểm của AB, AC, DC, BD. Khi góc C = góc D = 50 độ, hãy tính các góc của tứ giác MNPQ.
Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q theo thứ tự là trung điểm của AB, AC, CD, BD. Hình thang ABCD có thêm điều kiện gì thì MNPQ là hình vuông?
Hình thang ABCD là hình thang cân có hai góc kề một đáy đều bằng 45 0 thì MNPQ là hình vuông.
Cho hình thang cân ABCD ( AB // CD ) .Gọi M , N , P , Q theo thứ tự là trug điểm AB , BC , CD , DA
a) C/m tg MNPQ là h.thoi
b) Hình thang cân ABCD cần thêm điều kienj gì để tg MNPQ là hình vuông?
a,
Xét ABD, ta có :
MA = MB (gt)
QA = QD (gt)
=> MQ là đường trung bình.
=> MQ // BD và MQ = BD : 2 (1)
Cmtt, ta được :
NP // BD và NP = BD : 2 (2)
NM // AC và NM = AC : 2 (3)
Từ (1) và (2) : MQ // NP và MQ = PP
=> Tứ giác MNPQ làhình bình hành.
ta có :
AC = BD ( hai đường chéo hình thang cân ABCD)
NM = AC : 2 (cmt)
MQ = BD : 2 (cmt)
=> NM = MQ
Xét hình bình hành MNPQ, ta có :
NM = MQ (cmt)
=> hình bình hành MNPQ là hình thoi.
b , Nếu AC BD
NM // AC (cmt)
NP // BD (cmt)
=> NM NP tại N
Hay
Xét hình thoi MNPQ , ta có : (cmt)
=> hình thoi MNPQ là hình vuông.
tick nha bn