Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tấn Sang Nguyễn
Xem chi tiết
Thanh Nguyenthi
Xem chi tiết
super xity
Xem chi tiết
Thao Nhi
21 tháng 8 2015 lúc 8:51

a) xet tam giac AQP va tam giac CQD ta co

AQ=QC ( Q la trung diem AC)

goc AQP=goc CQD ( 2 goc doi dinh)

goc PAQ=goc QCD ( 2 goc so le trong va AB//CD)

--> tam giac AQP=tam giac CQD (g-c-g)

--> PQ=QD ( 2 canh tuong ung )

--> Q la trung diem PD

b) TA CO

AP=DC ( tam giac AQP=tam giac CQD)

AP=PB ( P la trung diem AB)

--> DC=PB

xet tam giac BPC va tam giac PCD ta co

DC=PB (cmt)

PC=PC ( canh chung)

goc DCP=goc BPC ( 2 goc so le trong va AB//CD)

--> tam giac BPC=tam giac PCD ( c-g-c)

--> goc BCP=goc DPC (2 goc tuong ung)

ma goc BCP va goc DPC nam o vi tri so le trong

nen PQ//BC

ta co

PD= BC ( tam giac PDC= tam giac BPC)

PQ=1/2 PD ( Q la trung diem PD)

-->PQ=1/2 BC

Bảo Khanh Đàm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2019 lúc 6:09

1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E 

F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .

2). Giả sử G là giao điểm của BE  CF.

Ta có  G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B   , và  F B ∥ A D  ta có  G ∈ A D .

3). Chứng minh  B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.

Kaarthik001
26 tháng 1 lúc 18:36

1) Chứng minh rằng tam giác \( A B F \) đồng dạng với tam giác \( A C E \):

- Tam giác \(ABF\) và \(ACE\) có:
  + Góc \(A\) chung.
  + Góc \(BAF\) bằng góc \(CAE\) (vì \(AD\) là phân giác của góc \(BAC\) và \(CF\), \(BE\) song song với \(AD\)).
  
  Do đó, tam giác \(ABF\) đồng dạng với tam giác \(ACE\) (theo trường hợp góc-góc).

2) Chứng minh rằng các đường thẳng \(BE\), \(CF\), \(AD\) đồng quy:

- Gọi \(G\) là giao điểm của \(BE\) và \(CF\).
- \(AD\) là phân giác góc \(BAC\), và \(BE\), \(CF\) song song với \(AD\). Do đó, \(G\) cũng nằm trên phân giác \(AD\).
- Vậy \(BE\), \(CF\), \(AD\) đồng quy tại \(G\).

3) Chứng minh rằng các điểm \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn:

- Gọi đường tròn ngoại tiếp tam giác \(GEC\) là \(\omega\).
- \(QE\) cắt \(\omega\) tại \(P\) khác \(E\), vậy \(P\) nằm trên đường tròn \(\omega\).
- \(GQ\) song song với \(AE\), và \(AE\) là đường kính của \(\omega\) (vì \(E\) là trung điểm của \(AC\) và \(G\) nằm trên phân giác của \(BAC\)). Do đó, \(GQ\) là dây cung của \(\omega\).
- \(PF\) là tiếp tuyến của \(\omega\) tại \(P\) (vì \(QE\) là tiếp tuyến và \(PF\) là phần kéo dài của \(QE\)).
- Góc \(PGF\) bằng góc \(GAC\) (cùng chắn cung \(GC\) của \(\omega\)).
- \(AF\) là trung trực của \(AB\), nên \(ABF\) là tam giác cân tại \(A\). Do đó, góc \(AFB\) bằng góc \(ABF\).
- Góc \(ABF\) bằng góc \(GAC\) (do đồng dạng của tam giác \(ABF\) và \(ACE\)).
- Vậy, góc \(PGF\) bằng góc \(AFB\). Do đó, \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn.

nguyenthithuytien
Xem chi tiết
nguyenthithuytien
Xem chi tiết
Minh Võ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 8 2018 lúc 13:06

a) Vận dụng đinh lý 1 về đường trung bình của tam giác suy ra APMQ là hình thoi do có 4 cạnh bằng nhau.

b) Vì PQ ^ AM mà AM ^ BC (tính chất tamgiacs cân) nên PQ//BC.