cho A= a - b + c ; B= - a +b - c với a, b, c thuộc Z. CMR A và B là hai số đối nhau
(ai làm đầy đủ đúng kết quả mình tích nha ^^)
cho a,b,c thuộc N.C/mR a(b+c)(c+a)+b(c+a)(a+b)+c(a+b)(b+c) không chia hết cho (a+b)((b+c)(c+a)
ĐK: \(\hept{\begin{cases}a\ne-b\\b\ne-c\\c\ne-a\end{cases}}\)
Xét thương: \(\frac{a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\).Do a,b,c thuộc N nên:
\(a⋮a+b\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\) (vì \(a⋮a\)) (1)
Khi đó: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1+\frac{c}{c+a}\).Giả sử \(a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)⋮\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Thì \(1+\frac{c}{c+a}\inℕ\Rightarrow\frac{c}{c+a}\inℕ\Leftrightarrow\orbr{\begin{cases}c=0\\a=0\end{cases}}\) (2)
Từ (1) và (2) suy ra: \(\orbr{\begin{cases}a=b=0\\b=c=0\end{cases}}...\left(h\right)...c=a=0\)
Suy ra \(\orbr{\begin{cases}a=-b=0\\b=-c=0\end{cases}..\left(h\right)..c=-a=0}\) (Mâu thuẫn với đk)
Từ đây suy ra điều giả sử là sai.Suy rađpcm.
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
Super Man mà lại còn phải lên đây để hỏi bài à?
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
1)Cho 1/c=1/2(1/a + 1/b) với a,b,c khác 0 và b khác c.CMR: a/b=a-c/c-b
2)Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.CMR:a/b=c/d
3)Cho a,b,c là các số nguyên dương.CMR:M=a/a+b + b/b+c + c/c+a
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
a, Cho a^2+b^2+c^2+3=2(a+b+c)
Chứng minh: a=b=c=1
b, Cho (a+b+c)^2=3(ab+ac+bc)
Chừng minh: a=b=c
c, Cho a,b,c,d (a,b,c,d khác 0) và (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Chừng minh: a/c=b/d
d, Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh:a=b=c
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c=1
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)
<=> \(a^2-ab+b^2-bc+c^2-ac=0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c
#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.
a) Cho a^2 + b^2 + c^2 + 3 = 2(a+b+c). Chứng minh a=b=c=1
b) Cho (a+b+c)^2 = 3(ab+bc+ac). Chứng minh a+b+c
c) Cho (a+b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c^2) + (b+c-2a^2) + (c+a-2b)^2. Chứng minh a=b=c
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Dấu ''='' xảy ra <=> a = b = c = 1
`a^2+b^2+c^2+3=2(a+b+c)`
`<=>a^2+b^2+c^2+3-2a-2b-2c=0`
`<=>a^2-2a+1+b^2-2b+1+c^2-2c+1=0`
`<=>(a-1)^2+(b-1)^2+(c-1)^2=0`
`VT>=0`
Dấu "=" `<=>a=b=c=1`
Áp dụng bđt cosi ta có:
`a^2+b^2>=2ab`
`b^2+c^2>=2bc`
`c^2+a^2>=2ca`
`=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`
`=>a^2+b^2+c^2>=ab+bc+ca`
`=>(a+b+c)^2>=3(ab+bc+ca)`
Dấu '=" `<=>a=b=c`
3 không rõ đề
a). Cho a/b=c/d( với b+d khác 0)
CM: a/b=a+c/b+c
b). Cho a/b+c/d( a,b,c,d khác 0)
CM: a-b/a=c-d/c
Bài 1 :
a) Cho a/b = b/c = c/a và a+b+c khác 0 . Tính M = a10.b7.c2000/b2017
b) Cho a,b,c là các số khác 0 sao cho : a+b-c/c = a-b+c/b = -a+b+c/a . Tính M = (a+b)(b+c)(c+a)/abc
AI LÀM NHANH NHẤT MÌNH TICK CHO
a) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\); b/c = 1 => b = c
=> a = b = c
\(\Rightarrow M=\frac{a^{10}.b^7.c^{2000}}{b^{2017}}=\frac{b^{10}.b^7.b^{2000}}{b^{2017}}=1\)
b) ta có: \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)
tương tự như trên
ta có: b + c = 2a
a+c = 2b
\(\Rightarrow M=\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=2^3=8\)
1)cho a,b,c>0. c/m ; a/a+b+b/b+c+c/c+a>1
2)cho a,b,c>0. c/m :a/c+a+b/a+b+c/b+c<2