Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cần Cần
Xem chi tiết
Bí Mật
19 tháng 5 2017 lúc 8:25

2a² + b²/4 + 1/a² = 4 
⇔ 8a⁴ + a²b² + 4 = 16a² 
⇔ a²b² = -8a⁴ + 16a² - 4 
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4 
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4 
⇔ │ab│ ≤ 2 
⇔ -2 ≤ ab ≤ 2 

--> A = ab + 2011 ≥ 2009 

Dấu " = " xảy ra ⇔ 
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1 
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2 

giang đào phương
Xem chi tiết
Nguyễn Minh Quang
9 tháng 8 2021 lúc 9:19

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

Khách vãng lai đã xóa
Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Vân Khánh
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Kiệt Nguyễn
16 tháng 10 2020 lúc 12:45

Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)

Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)

MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)

Khách vãng lai đã xóa
Leonah
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
Vũ Tri Hải
18 tháng 5 2017 lúc 23:17

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

Thắng Nguyễn
19 tháng 5 2017 lúc 7:08

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

Thắng Nguyễn
19 tháng 5 2017 lúc 7:11

à nhầm sr