cho hình vuông abcd có cạnh bằng a. N là điểm tùy ý thuộc cạnh AB. Gọi E là giao điểm của CN và DA
Cho hình vuông ABCD có cạnh =a. N là điểm tùy ý trên cạnh AB gọi E là giao điểm CN và DA. Vẽ tia Cx vuông góc CE cắt AB tại F. Lấy M là trung điểm của EF
a) chứng minh : CM vuông góc AF
b) CM:
NB.DE=a2 và B,D,M thẳng hàng
c) tìm vị trí điểm N trên AB sao cho diện tích AEFC gấp 3 lần diện tích hình vuông ABCD
bạn nào giải giúp mình câu C với ==>>> THANK YOU!!!
Em tham khảo tại đây nhé.
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath
cho hình vuông ABCD có cạnh bằng a và điểm N trên cạnh AB( N khác A và B). Gọi E là giao điểm của tia CN và tia DA. Từ điểm C kẻ tia Cy\(\perp\)CE cắt tia AB tại F. Đặt BN=x.
a, Tính SACFE theo a và x
b, Xác định vị trí của N trên AB sao cho SACFE = 3SABCD
Cho Δ ABC. Lấy điểm M tùy ý trên cạnh BC. Lấy N tùy ý trên cạnh AM. Đường thẳng
DE // BC (D ∈ AB, E ∈ AC). Gọi P là giao điểm của DM và BN và Q là giao điểm của CN và EM.
Chứng minh rằng: PQ // BC.
Xét ΔPDN và ΔPMB có
góc PDN=góc PMB
góc DPN=góc MPB
=>ΔPDN đồng dạng với ΔPMB
=>PD/PM=DN/MB=AN/AM
Xét ΔQNE và ΔQCM có
góc QNE=góc QCM
góc NQE=góc CQM
=>ΔQNE đồng dạng với ΔQCM
=>QN/QC=NE/CM=QE/QM=AN/AM
=>QE/QM=DP/PM
=>MP/PD=MQ/QE
=>PQ//DE
=>PQ//BC
Cho hình vuông ABCD cạnh a và điểm N trên cạnh AB. Gọi E là giao điểm của tia CN cắt tia DA. Từ điểm C, ta kẻ tia Cy vuông góc với CE cắt tia AB tại F. Gọi độ dài đoạn BN bằng x.
a/ Tính diện tích tứ giác ACFE theo a và x ?
b/Tìm vị trí của N trên AB sao cho diện tích của tứ giác ACFE gấp 3 lần diện tích hình vuông ABCD ?
giúp mình nhanh nha mình đang cần gấp
nhanh mk cho
a) Xét tam giác vuông ABC, theo Pitago ta có: \(NC^2=NB^2+BC^2=x^2+a^2\)
Xét tam giác vuông NCF, chiều cao CB: Áp dụng hệ thức lượng ta có : \(NF=\frac{NC^2}{NB}=\frac{x^2+a^2}{x}\)
AN = a - x ; \(\frac{EA}{BC}=\frac{AN}{NB}\Rightarrow EA=\frac{a-x}{x}.a=\frac{a^2-ax}{x}\)
\(AF=AN+NF=a-x+\frac{a^2+x^2}{x}=\frac{ax+a^2}{x}\)
Vậy nên \(S_{ACEF}=S_{EAF}+S_{CAF}=\frac{1}{2}.AF.EA+\frac{1}{2}AF.BC\)
\(=\frac{1}{2}.\frac{ax+a^2}{x}.\left(\frac{a^2-ax}{x}+a\right)=\frac{1}{2}.\frac{ax+a^2}{x}.\frac{a^2}{x}=\frac{a^4+a^3x}{2x^2}\left(đvdt\right)\)
b) Ta có \(\frac{a^4+a^3x}{2x^2}=3a^2\Rightarrow a^2+ax-6x^2=0\)
\(\Rightarrow\left(a-2x\right)\left(a+3x\right)=0\)
Do a, x > 0 nên a = 2x hay N là trung điểm AB.
Cho hình vuông ABCD cạnh a và điểm N trên cạnh AB. Gọi E là giao điểm của tia CN cắt tia DA. Từ điểm C, ta kẻ tia Cy vuông góc với CE cắt tia AB tại F. Gọi độ dài đoạn BN bằng x.
a/ Tính diện tích tứ giác ACFE theo a và x ?
b/Tìm vị trí của N trên AB sao cho diện tích của tứ giác ACFE gấp 3 lần diện tích hình vuông ABCD ?
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Cho hình vuông ABCD có cạnh bằng a. Gọi E;F;G;H lần lượt là trung điểm của các cạnh AB;BC;CD;DA. Gọi M là giao điểm của CE và DF. Tính diện tích tam giác MDC theo a
Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a
=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)
=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ
=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF
Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)
Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)
\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)
Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)
\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)
Cho hình vuông ABCD có cạnh bằng a. Gọi E, F lần lượt là trung điểm các cạnh AB,BC . Gọi M là giao điểm của CE và DF .A. c/m góc ECB = góc CDF và CE vuông góc DF B.c/m CM.CECF =a C. Gọi K là giao điểm của CM và DA . C/m tam giác MAD cân
cho hình vuông ABCD cạnh a và điểm N trên cạnh AB. cho biết tia CN cắt tia DA tại E, tia Cx vuông góc với tia CE cắt tia AB tại F. gọi M là trung điểm của đoạn thẳng EF
Xác định vị trí điểm N trên cạnh AB sao cho tứ giác ACFE có diện tích gấp 3 lần diện tích hình vuông ABCD
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath
Em tham khảobài tương tự tại đây nhé.
Cho hình vuông ABCD. Điểm M thuộc cạnh AB(M khác A và B). Tia CM cắt tia DA tại N. Vẽ Cx vuông góc với CM và cắt tia AB tại E. Gọi H là trung điểm của đoạn NE. Tìm vị trí của điểm M trên cạnh AB để diện tích tứ giác NACE bằng 15/8 diện tích hình vuông ABCD.
Mk chỉ nêu cách làm bạn tự triển khai nha!
CM \(\Delta ADC=\Delta CBE (g.c.g)\) (*)
(\(\angle C_1=\angle C_2\) cùng phụ với \(\angle ACB\))
\(\Rightarrow AC=CE\Rightarrow \Delta ACE \) cân tại C
\(\Rightarrow AB=CE\)
Từ (*) suy ra:
\(S_{ANEC}=S_{ACE}+S_{ANE}=S_{ABCD}+S_{ANE}\)
\(=\dfrac{1}{2}AB^2+\dfrac{1}{2}NA.2AB=\dfrac{1}{2}AB(AB+2NA)\)
Mà \( S_{ANCE}=\dfrac{15}{8} S_{ABCD}\) \(\Rightarrow \dfrac{15}{8}.\dfrac{1}{2} AB^2=\dfrac{1}{2}.AB(2AN+AB)\)
\(\Rightarrow 2AN+AB=\dfrac{15}{8}AB\) \(\Rightarrow \dfrac{NA}{AB}=\dfrac{7}{16}\)
CM \(\Delta NAM \) đồng dạng với \(\Delta CBM\) \((g.g)\)
\(\Rightarrow \dfrac{NA}{AB}=\dfrac{NA}{BC}=\dfrac{AM}{MB}=\dfrac{7}{16}\)
Vậy cần lấy M sao cho \(\dfrac{AM}{MB}=\dfrac{7}{16}\)