tìm x thuộc z biết: x^2-7x+10=0
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
1)Tìm n thuộc Z biết:3^-2*3^4*3^n=3^7
2)Tìm x thuộc Q biết:(7x+2)^-1=3^-2
3)Tìm x,y thuộc Z biết:(2x-5)^2000+(3y+4)^2002 bé hơn hoặc bằng 0.
Tìm x,y thuộc Z,biết : a) xy+5x+y=4 b)xy+14+2y+7x=-10 c)xy+x+y=2.
`a)xy+5x+y=4`
`=>x(y+5)+y+5=9`
`=>(y+5)(x+1)=9`
Vì `x,y in ZZ`
`=>x+1,y+5 in ZZ`
`=>x+1,y+5 in Ư(9)={+-1,+-3,+-9}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
`b)xy+14+2y+7x=0`
`=>y(x+2)+7(x+2)=0`
`=>(x+2)(y+7)=0`
`=>` \(\left[ \begin{array}{l}x=-2\\y=-7\end{array} \right.\)
`c)xy+x+y=2`
`=>x(y+1)+y+1=3`
`=>(x+1)(y+1)=3`
Vì `x,y in ZZ`
`=>x+1,y+1 in ZZ`
`=>x+1,y+1 in Ư(3)={+-1,+-3}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
Giải:
a) \(xy+5x+y=4\)
\(\Rightarrow x.\left(y+5\right)+\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right).\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+5\right)\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng giá trị:
x+1 | -9 | -3 | -1 | 1 | 3 | 9 |
y+5 | -1 | -3 | -9 | 9 | 3 | 1 |
x | -10 | -4 | -2 | 0 | 2 | 8 |
y | -6 | -8 | -14 | 4 | -2 | -4 |
Vậy \(\left(x;y\right)=\left\{\left(-10;-6\right);\left(-4;8\right);\left(-2;-14\right);\left(0;4\right);\left(2;-2\right);\left(8;-4\right)\right\}\)
b) \(xy+14+2y+7x=-10\)
\(\Rightarrow y.\left(x+2\right)+7x+14=-10\)
\(\Rightarrow y.\left(x+2\right)+7.\left(x+2\right)=-10\)
\(\Rightarrow\left(x+2\right).\left(y+7\right)=-10\)
\(\Rightarrow\left(x+2\right)\) và \(\left(y+7\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng giá trị:
x+2 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
y+7 | 1 | 2 | 5 | 10 | -10 | -5 | -2 | -1 |
x | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
y | -6 | -5 | -2 | 3 | -17 | -12 | -9 | -8 |
Vậy \(\left(x;y\right)=\left\{\left(-12;-6\right);\left(-7;-5\right);\left(-4;-2\right);\left(-3;3\right);\left(-1;-17\right);\left(0;-12\right);\left(3;-9\right);\left(8;-8\right)\right\}\)
c) \(xy+x+y=2\)
\(\Rightarrow x.\left(y+1\right)+\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right).\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x+1 | -3 | -1 | 1 | 3 |
y+1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -2 | -4 | 2 | 0 |
Vậy \(\left(x;y\right)=\left\{\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\right\}\)
Chúc bạn học tốt!
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Tìm x thuộc Z biết
A) (x + 3 )2 =49
B) 7x + 10 =5x-2
a. (x+3)2=49
=> (x+3)2=72=(-7)2
=> x+3=7 hoặc x+3=-7
=> x=7-3 hoặc x=-7-3
=> x=4 hoặc x=-10
b. 7x+10=5x-2
=> 7x-5x=-2-10
=> 2x=-12
=> x=-12:2
=> x=-6
a) (x+3) 2 = 49 b)7x+10=5x-2
(x+3) 2 = 72 5x-7x=10+2
=>x+3=7 -2x= 12
=>x=4 =>x= -6
Tìm x thuộc Z , biết ; 5(2x+3)-7x=0
\(5.\left(2x+3\right)-7x=0\)
\(\Rightarrow10x+15-7x=0\)
\(\Rightarrow\left(10x-7x\right)+15=0\)
\(\Rightarrow3x=-15\)
\(\Rightarrow x=-5\)
Vậy \(x=-5\)
\(5\left(2x+3\right)-7x=0\)
\(\Leftrightarrow10x+15-7x=0\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
\(5\left(2x+3\right)-7x=0\)
\(\Leftrightarrow10x+15-7x=0\)
\(\Leftrightarrow3x+15=0\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
vậy x=-5
tìm x thuộc Z biết:
a) 8 . (7 - x) = 15 - 7x
b) ( x - 1) . ( -14 - 8) < 0
c) (x + 5). (3x - 12) > 0
d) 7 . ( -x + 10 ) - (3x + 7) . 6 = - 72
e) (x - 5) . ( 2x - 16) = 0
Tìm x thuộc Z biết :
a) (x2+2).(x+3)>0
b) |7x-2| nhỏ hơn hoặc bằng 19
a) Vì x2+2>0 nên để (x2+2).(x+3)>0 thì x+3>0
=> x>-3
b)|7x-2|\(\le\)19
Xét 0\(\le\)|7x-2|\(\le\)19
=> 0\(\le\)7x-2\(\le\)19
=>1\(\le\)x\(\le\)2 (1)
Xét |7x-2|<0
=>2-7x<0
=> x>0 (2)
Từ (1) và (2) ta có x\(\in\){1,2}
a) Vì \(x^2\ge0\Rightarrow x^2+2\ge2\)
\(\Rightarrow\left(x^2+2\right).\left(x+3\right)>0\Leftrightarrow x+3>0\Leftrightarrow x>-3\)
Vậy với mọi x thuộc Z thỏa mãn x> 3 thì ( x2 +2 ) ( x+ 3 ) >0
b) \(\left|7x-2\right|\le19\) mà \(\left|7x-2\right|\ge0\) và x thuộc Z nên :
\(\left|7x-2\right|=0;1;2;3;4;5;......;19\)
Bn tự làm tiếp nhé!
bài 1:tìm x thuộc Z biết
a,|x+2|lớn hơn hoặc bằng 5
b,|x+1|>2
bài2 tìm x thuộc Z biết
a,|x-1|-x+1=0
b,|2-x|-2=x
c,|x+7|=|x-9|
bài 3:tìm x thuộc Z biết
a,|x+25|+|-y+5|=0
b,|x-40|+|x-y+10|lớn hơn hoặc bằng 0
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk