Tìm số nguyên n sao cho
3^2.3^4.3^n=3^7
Tìm số nguyên n biết: 1/9.27^n=3^n. b)3^-2.3^4.3^n=3^7. c) 2^n-1.2^n+4.2^n=9.2^5. d)32^-n.16^n=2048. Các bạn giải hộ mình nhé
a)1/9.27^n=3^n
3^n=3^n
=>n={0;1;2;3;...}
a) n= 2;3;5;7;...(n là số nguyên)
Tìm số nguyên n biết: 1/9.27^n=3^n. b)3^-2.3^4.3^n=3^7. c) 2^n-1.2^n+4.2^n=9.2^5. d)32^-n.16^n=2048. Các bạn giải hộ mình nhé
Toán lớp 6
a)1/9.27^n=3^n
3^n=3^n
=>n={0;1;2;3...}
Tích nha ^_^ !!!
Tìm n, biết:
a) 8^n+1= 8^2
b) 7^n= 343
c) 16 phần 2n= 2
d) 3^2:3^n= 3^5
e) 9.3^4.3^n= 3^7
g) (n-2)^2= 1
h) (n-1)^3=8
k) 3^2.3^n=3^5
a) Tính
A=\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-2^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
b) Chứng tỏ với mọi số nguyên n thì:
\(3^{n-2}-2^{n+2}+3^n-2^n⋮10\)
1/ Tính
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\)
2/ Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)có giá trị nguyên
3/ CMR : \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi n thuộc N
Đặt d=ƯCLN(12n+1;30n+2)
=>12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản
Bài 1:
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)
\(=\frac{9}{41}-\frac{206}{375}=\)
Bài 2:
\(\frac{6n+99}{3n+4}=\frac{6n+8}{3n+4}+\frac{91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
Để \(\frac{6n+99}{3n+4}\) nguyên thì \(\frac{91}{3n+4}\) nguyên <=> 91 chia hết cho 3n+4
<=>3n+4 \(\inƯ\left(91\right)=\left\{-91;-13;-7;-1;1;13;17;91\right\}\)
<=>3n\(\left\{-95;-17;-11;-5;-3;9;13;87\right\}\)
<=>\(n\in\left\{-\frac{95}{3};-\frac{17}{3};-\frac{11}{3};-\frac{5}{3};-1;3;\frac{13}{3};29\right\}\)
n là số tự nhiên nên \(n\in\left\{3;29\right\}\)
Tìm n thuộc Z biết:
a)\(\frac{1}{9}.27^n=3^n\)
b) \(3^2.3^4.3^n=3^7\)
c) \(2^{-1}.2^n+4.2^n=9.2^5\)
d) \(32^{-n}.16^n=2048\)
a) Ta có: \(\frac{1}{9}\cdot27^n=3^n\)
\(\Leftrightarrow\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Leftrightarrow3^{3n}=3^{n+2}\)
\(\Rightarrow3n=n+2\)
\(\Rightarrow n=1\)
b) Ta có: \(3^2.3^4.3^n=3^7\)
\(\Rightarrow3^n=3\)
\(\Rightarrow n=1\)
c) Ta có: \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Leftrightarrow2^n\cdot\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d) Ta có: \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\frac{1}{2^{5n}}\cdot2^{4n}=2^{11}\)
\(\Leftrightarrow2^{4n}=2^{5n+11}\)
\(\Rightarrow4n=5n+11\)
\(\Rightarrow n=-11\)
a) thực hiện phép tính :
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
b) chứng minh rằng : Với mọi số nguyên dương n thì :
\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)
\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)
\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)
\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)
b,\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)
\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)
\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)
\(=3^n\cdot9+1-2^n\cdot4+1\)
\(=3^n\cdot10-2^n\cdot5\)
Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)
\(3^n\cdot10⋮10\)
Vậy : ....
A = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
= \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
= \(\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1+8\right)}\)
= \(\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}\)
= \(\frac{1}{6}-\frac{-10}{3}\)
= 7/2
4.3x-2+2.3x+1=4.34+2.37
b,4.3x-12.3x+2=4.36+2.39
tại vì nó ko có đề mà có đề gì mà dễ như ăn cháo dzậy
A)2.3x+2+4.3x+1=10.36
B)6.8x-1+8x+1=6.819+821
C)4.3x-2+2.3x+1=4.34+2.37
(lưu ý dấu (.) là nhân)
Giúp mình với!!!
A) \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
=> \(2.3.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(6.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(\left(6+4\right).3^{x+1}=10.3^6\)
=> \(10.3^{x+1}=10.3^6\)
=> \(3^{x+1}=3^6\)
=> \(x+1=6\)
=> \(x=6-1\)
=> \(x=5\)
Vậy \(x=5.\)
B) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)
=> \(6.8^{x-1}+8^{x-1}.8^2=6.8^{19}+8^{19}.8^2\)
=> \(8^{x-1}.\left(6+8^2\right)=8^{19}.\left(6+8^2\right)\)
=> \(8^{x-1}=8^{19}\)
=> \(x-1=19\)
=> \(x=19+1\)
=> \(x=20\)
Vậy \(x=20.\)
Còn câu c) thì mình đang nghĩ nhé.
Chúc bạn học tốt!