cho A=1+2+2^2+2^3+...+2^2019 chứng minh rằng A chia hết cho 2,3,7,30
chứng minh rằng A=10^2019+2 chia hết cho 2 và 3
\(A=10^{2019}+2=\left(2.5\right)^{2019}+2=2\left(2^{2018}.5^{2019}+1\right)⋮2\)
Ta có: 10 chia 3 dư 1
=> \(10^{2019}:3\)dư 1
=> \(10^{2019}+2:3\)dư 3
mà 3 chia hết cho 3
=> \(10^{2019}+2⋮3\)
Cho A = 1 + 2 + 2 mũ 2 + 2 mũ 3 + …. + 2 mũ 2019
Chứng tỏ rằng A chia hết cho 3 và 7
A = 1 + 2 + 22 + 23 + ... + 22019
Xét dãy số: 0; 1; 2; 3;...;2019 dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
(2019 - 0) : 1 + 1 = 2020 (số hạng)
Vì 2020 : 2 = 1010 nên nhóm hai số hạng liên tiếp của A vào nhau ta được A:
A = 1 + 2 + 22 + 23 +...+ 22019
A = (1 + 2) + (22 + 23) + ... + (22018 + 22019)
A = 3 + 22.( 1 + 2) + .... + 22018.(1 + 2)
A = 3. + 22.3 + .... + 22018.3
A = 3.( 1 + 22 + ... + 22018)
Vì 3 ⋮ 3 ⇒ A = 3.(1 + 22 + ... + 22018) ⋮ 3
Vì 2020 : 3 = 673 dư 1 nên nhón 3 hạng tử liên tiếp của A thành một nhóm thì A là tổng của 1 và 673 nhóm khi đó
A = 1 + ( 2 + 22 + 23) + (24 + 25 + 26) + ... + (22017 + 22018 + 22019)
A = 1 + 2.( 1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 22017.(1 + 2 + 22)
A = 1 + 2.7 + 24.7 + ... + 22017 . 7
A = 1 + 7.(2 + 24 + .... + 22017)
Vì 7 ⋮ 7; 1 không chia hết cho 7 nên A không chia hết cho 7
Việc chứng minh A ⋮ 7 là điều không thể xảy ra.
1)Tìm chữ số tận cùng của:
a) A=17.174.177....17100
b)B=(21)2.(22)3.(23)4....(299)100
2)
a) Cho A=9999932019-6666672017
Chứng minh rằng A chia hết cho 10
b)Cho B=2.4.6.....2022-1.3.5....2021
Chứng minh rằng B chia hết cho 5
a) TÌm số tự nhiên n để (2n + 7) chia hết cho (n+1)
b) Cho A = 2^0 + 2^1 + 2^2 + 2^3 +... +2^2018 , B= 2^2019 . Chứng minh rằng a và b là hai số tự nhiên liên tiếp
a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)
\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}
b/
\(2A=2+2^2+2^3+2^4+...2^{2019}\)
\(\Rightarrow A=2A-A=2^{2019}-1\)
=> A, B là 2 số tự nhiên liên tiếp
cho A bằng 2 mũ 1 + 2 mũ 2 +2 mũ 3 + ..... + 2 mũ 120
chứng minh rằng A chia hết cho 7
chứng minh rằng A chia hết cho 31
chứng minh rằng A chia hết cho 217
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
chứng minh rằng nếu n là số nguyên dương thì:
2(1^2019+2^2019+3^2019+...+n^2019) chia hết cho n(n+1)
Xin chào bạn ! Mình là youtuber PUBG Takaz đây !
Chứng minh rằng A chia hết cho 3
A=1+2+2\(^2\)+2\(^3\)+...+2\(^{2018}\)+2\(^{2019}\)
A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)
A=(1+2) + 2^2(1+2)+ +(2^2018(1+2)
a=3.1+2^2 x 3 +.......+2^2018x3
A=3(1+2^2+....+2^2018) chia hết cho 3 (vì 3 nhân với số nào cũng chia hết cho 3)
=>A chia hết cho 3
A= 1+2+22+23+...+22018+22019
A= 1.(1+2)+22.(1+2)+...+22018.(1+2)
Vì 1+2=3 => A= 3.(1+22+23+...+22018)
Vì 3 chia hết cho 3 => 3.(1+22+23+...+22018) chia hết cho 3 nên A chia hết cho 3
Vậy A chia hết cho 3
Chứng minh A=2019+2019^2+2019^3+2019^4+2019^5+2019^6 chia hết cho 2.
+)Ta có:\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
\(\Rightarrow A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
\(\Rightarrow A=\left(2019+2019^2\right)+2019^2.\left(2019+2019^2\right)+2019^4.\left(2019+2019^2\right)\)
+)Ta lại có:20192 tận cùng là 1
=>2019+20192 tân cùng là 9+1=10
=>2019+20192\(⋮2\)
\(\Rightarrow\left(2019+2019^2\right)⋮2;2019^2.\left(2019+2019^2\right)⋮2;2019^4.\left(2019+2019^2\right)⋮2\)
\(\Rightarrow A⋮2\)
Vậy \(A⋮2\left(ĐPCM\right)\)
Chúc bn học tốt
A = 2019 + 20192 + 20193 + 20194 + 20195 + 20196
A = ( 2019 + 20192 ) + ( 20193 + 20194) + ( 20195 + 20196)
A = 1 . ( 2019 + 20192 ) + 20193 . (2019 + 20192 ) + 20195 . ( 2019 + 20192 )
A = 1 . 4 078 380 + 20193 . 4 078 380 + 20195 . 4 078 380
A = 4 078 380 . ( 1 + 20193 + 20195) \(⋮2\rightarrowĐPCM\)
# HOK TỐT #
\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
<=> \(A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
<=>\(A=2019.\left(1+2019\right)+2019^3.\left(1+2019\right)+2019^5\left(1+2019\right)\)
<=>\(A=2019.2020+2019^3.2020+2019^5.2020\)
<=>\(A=2020.\left(2019+2019^3+2019^5\right)\)
<=>\(A=2.1010\left(2019+2019^3+2019^5\right)⋮2\)=> \(A⋮2\)
Vậy .....
Chứng minh: ababab chia hết cho 13
abcabc chia hết cho 11; Cho A =2 mủ 0 + 2 mủ 1 + 2 mủ 2 + 2 mủ 3 + 2 mủ 4 +......+2 mủ 2019