cho B =\(\frac{2\left(x-2\right)}{x\left(x+2\right)}\)
tìm x để B có giá trị nguyên
Cho biểu thức :\(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
a/ Thu gọn A
b/ Tìm các giá trị của x để A<1
c) Tìm các giá trị nguyên của x để A có giá trị nguyên
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
Cho biểu thức: \(A=\left[\frac{4}{\left(x+2\right)^3}\left(\frac{2}{x}+1\right)+\frac{1}{x^2+4x+4}\left(\frac{4}{x^2}+1\right)\right]:\frac{x^2+1}{x^3-x^2}\)
a) Rút gọn A
b) Tìm giá trị của x để A > 0
c) Tìm giá trị nguyên của x để A nguyên
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) rút gọn và tìm giá trị của x để A < 0
b) tìm các giá trị nguyên của x để A có giá trị nguyên
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a, Rút gọn và tìm giá trị của x để A < 0
b, Tìm giá trị nguyên của x để A có giá trị nguyên
Lời giải:
ĐKXĐ: $x\neq \pm 2$
\(A=\left[\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right]:\frac{x^2-4+10-x^2}{x+2}\\ =\frac{x-2(x+2)+x-2}{(x-2)(x+2)}:\frac{6}{x+2}\\ =\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}\\ =\frac{-1}{x-2}=\frac{1}{2-x}\)
Để $A<0\Leftrightarrow \frac{1}{2-x}<0$
$\Leftrightarrow 2-x<0\Leftrightarrow x>2$
Kết hợp với ĐKXĐ suy ra $x>2$
b.
Với $x$ nguyên, để $A$ nguyên thì $1\vdots 2-x$
$\Rightarrow 2-x=1$ hoặc $2-x=-1$
$\Rightarrow x=1$ hoặc $x=3$
Cho biểu thức A= \(\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
a) Rút gọn A
b) Tìm giá trị của A biết |x-5|=2
c) Tìm giá trị nguyên dương của x để A < 4 và A có giá trị là một số nguyên
a) \(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)(ĐKXĐ: \(\hept{\begin{cases}x\ne\pm2\\x\ne3\end{cases}}\))\(=\left[\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}\right]:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)\(=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}.\frac{2-x}{x-3}=\frac{4x}{x-3}\)
b) l\(x-5\)l\(=2\Leftrightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\left(n\right)\\x=3\left(l\right)\end{cases}\Rightarrow A=\frac{4.7}{7-3}=\frac{28}{4}=7}\)
c)
* Để A có giá trị là một số nguyên thì \(A=\frac{4x}{x-3}=\frac{4x-12+12}{x-3}=4+\frac{12}{x-3}\)là một số nguyên hay \(\frac{12}{x-3}\)là một số nguyên \(\Rightarrow x-3\inƯ\left(12\right)\Rightarrow S=\left(-9;-3;-1;0;1;4;5;6;7;9;15\right)\)(1)
* Để \(A=4+\frac{12}{x-3}< 4\Leftrightarrow\frac{12}{x-3}< 0\) thì \(x-3< 0\Leftrightarrow x< 3\)(2)
(1)(2) \(\Rightarrow S=\left(-9;-3;-1;0;1\right)\)
Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A<0
c) TÌm các giá trị nguyên của x để A có giá trị nguyên
cho biểu thức: P=\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) tìm điều kiện của x để P có nghĩa
b) rút gọn P
c) tìm các giá trị nguyên của x để P có giá trị nguyên
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.
Cho biểu thức: P=\(\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left[\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right]\)
a, Rút gọn P
b, Tìm x để P<0
c,Tìm x nguyên để P có giá trị nguyên
\(P=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
\(=\left[\frac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}-\frac{\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right]:\left[\frac{2\left(\sqrt{x}-1\right)^2}{x-1}\right]\)
Phương trình tương đương :
\(=\frac{2x^2-2x}{x^2-x}:\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=2:\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\frac{2\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Cho biểu thức P=\(\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\).\(\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a)Rút gọn P;
b)Tìm các giá trị nguyên của x để P có giá trị nguyên;
c)Tìm x để P>1.