Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trọng Thế
Xem chi tiết
Pé Jin
21 tháng 12 2015 lúc 16:19

Mặc dù không bít có hay không

Đỗ Linh Giang
Xem chi tiết
Nobita Kun
18 tháng 11 2015 lúc 15:51

Theo công thức, ta có:

UCLN.BCNN = a.b (Phần này bạn không chép vào)

(Bắt đầu từ đây thì bạn chép) 

Theo bài ra, ta có:

UCLN(a; b) = 10

BCNN(a; b) = 120

=> a.b = 10.120 = 1200  (*)
Vì UCLN(a; b) = 10

=> đặt a = 10k (1)  (k, q thuộc N*; UCLN(k, q) = 1)

     đặt b = 10q (2)

Thay a = 10k và b = 10q vào (*), ta có:

10k.10q = 1200.

(10.10).(k.q) = 1200

100.k.q = 1200

k.q = 1200 : 100 = 12.   (3)

=> (k; q) thuộc {(1; 12); (2; 6); (3; 4); (4; 3); (6; 2); (12; 1)}

Mà UCLN(k; q) = 1

=> (k; q) thuộc {(1; 12); (3; 4); (4; 3); (12; 1)}   (4)

Từ (1); (2); (3); (4), ta có bảng sau:

k13412
q12431
a103040120
b120403010

Vậy (a; b) thuộc {(10; 120); (30; 40); (40; 30); (120; 10)}

hatrang
Xem chi tiết
Kim Ngọc Phạm
10 tháng 2 2022 lúc 21:27

+) Co: (a,b)= 16

=> a=16m;b=16n   (m;n thuoc Z; (m,n)=1)

+)Co: ab=[a,b].(a,b)=240.16=3840

=> ab=16m.16n=256mn=3840

=> mn=3840:256=15

=>

        m3
         n         15   5

=>

             a          16           48
             b                    240                  80          

Vay hai co hai so nguyen duong la: 16;240

                                                    48;80

Minh Thư Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 21:00

a=12

b=72

Vũ Huy An
Xem chi tiết
Akai Haruma
13 tháng 11 2023 lúc 9:05

a.

Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:

$5a=13b$

$\Rightarrow 5.48x=13.48y$

$\Rightarrow 5x=13y$

$\Rightarrow 5x\vdots 13; 13y\vdots 5$

$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.

Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$

$\Rightarrow x=13; y=5$

$\Rightarrow x=13.48=624; y=5.48=240$

Akai Haruma
13 tháng 11 2023 lúc 9:07

b. 

Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.

Khi đó:
$BCNN(a,b)=dxy=360$

$ab=dx.dy=d.dxy=6480$

$\Rightarrow d.360=6480$

$\Rightarrow d=18$

$\RIghtarrow xy=360:d=360:18=20$

Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:

$(x,y)=(1,20), (4,5), (5,4), (20,1)$

Đến đây bạn thay vào tìm $a,b$ thôi.

Akai Haruma
13 tháng 11 2023 lúc 9:10

c.

Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$. Khi đó:

$BCNN(a,b)=7.ƯCLN(a,b)$

$\Rightarrow dxy=7.d$

$\Rightarrow xy=7$. Mà $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(1,7), (7,1)$

$\Rightarrow x+y=8$.

$a+b=dx+dy=40=d(x+y)=8d\Rightarrow d=5$

Nếu $(x,y)=(1,7)\Rightarrow a=dx=5.1=5; b=dy=5.7=35$

Nếu $(x,y)=(7,1)\Rightarrow a=dx=5.7=35; b=dy=5.1=5$

 

Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
30 tháng 6 2019 lúc 11:06

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)

Mars
Xem chi tiết
Bùi Đức Lộc
16 tháng 12 2017 lúc 14:48

Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath

Nhớ xem và !

Nguyễn Đức Trường
16 tháng 12 2017 lúc 14:51

a, 24 và 10

b, 6 và 30

c, 6 và 36

d, <không có trường hợp nào>

e, 36 và 6

Chúc bạn học giỏi !

<Lưu ý : Bạn xem lại câu d>

Dư Thị Khánh Hòa
20 tháng 12 2017 lúc 20:49

d) Do (a,b) = 5 => a = 5m

                              b = 5n

                ( m,n ) = 1

a : b = 2,6 => a/b = 13/5 = 5m/5n => m = 13 ; n =5

=> a = 65                b = 25

Phạm Hồng Mai
Xem chi tiết
Lê Song Phương
15 tháng 10 2023 lúc 22:06

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

Hoàng Tùng Lâm
15 tháng 10 2023 lúc 21:03

 Ko bt

Thanh Trà mun
15 tháng 10 2023 lúc 21:08

Tớ chịu🤔

Premis
Xem chi tiết