cho a/c = c/b chung minh b^2 -a^2 /a^2 +c^2 = b-a/a
cho a/c = c/b chung minh b^2 -a^2 /a^2 +c^2 = b-a/a
cho a/b=c/b chung minh rang a^2+c^2/b^2+c^2
cho a+b+c=1 chung minh (a+bc)(b+ac)(c+ab)=(a+b)^2(a+c)^2(b+c)^2
tham khảo tại link nek:
https://h.vn/hoi-dap/question/500717.html
~ho ktoost~
cho a/c=c/b chung minh rang
a, a^2+c^2/b^2+c^2=a/b
b, b^2-a^2/a^2+c^2=b-a/a
a)
Ta có
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)
\(\frac{a}{b}=\frac{a}{c}.\frac{c}{b}=\left(\frac{a}{c}\right)^2\)
Mà\(\frac{a^2+c^2}{b^2+c^2}=\left(\frac{a}{c}\right)^2=\frac{a}{b}\). Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Cho a/(b+c)+b/(c+a)+c/(a+b)=1. chung minh rang
a^2/(b+c)+b^2/(c+a)+c^2/(a+b)=0
cho a,b,c la cac so thuc duong. chung minh rang 2a/(b+c)+2b/(c+a)+2c/(a+b)>=((a-b)^2+(b-c)^2+(c-a)^2)/(a+b+c)^2
cho a^2(b+c)=b^2(a+c)=2015
a,chung minh a*b*c=-2015
b,tinh c^2(a+b)
A. Ta có : a^2 (b+c)= b^2(a+c)
→ a^2(b+c)- b^2(a+c) =0
→ aab+aac-bba-bbc =0
→ (aab-bba) + ( aac-bbc) =0
→ ab (a-b )+ c(a+b)(a-b) =0
→[ c(a+b)+ab] . (a-b) =0
Mà a-b khác 0
→ c(a+b) +ab =0
→ac+bc+ab=0
→ b(a+c)=-ac
→ b^2 (a+c) =-abc
Mà b^2 (a+c) =2015 ( đề bài )
→ -abc =2015
→ ĐPCM
a^2*(b+c)=b^2*(a+c)=>2015/a^2-b=2015/b^2-a
2015/b^2-2015/a^2=a-b
2015*a^2-2015*b^2=(a-b)*a^2*b^2
2015*a^2-2015*b^2=a*b^2*a^2-a^2*b*b^2
=>a*b^2=2015;a^2*b=2015
=>a*b^2=a^2*b
=>b^2=a*b;a^2=a*b
=>a^2=b^2
=>a=b hoặc a=-b.Mà a,b,c đôi một khác nhau
=>a=-b=>a+b=0=>A=c^2*(a+b)=0
cho a/b=c/d Chung minh a^2+b^2 / a^2 -b^2 = c^2+d^2 /c^2 -d^2
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\end{cases}}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)
Vậy \(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)
cho a,b,c la 3 so khac 0 va a+b+c=0 chung minh rang 1/a^2+b^2-c^2+1/b^2+c^2-a^2+1/c^2+a^2-b^2=0