tính tổng S= (1/2018!)+(1/3!2016!)+(1/5!2014!)+...+(1/2017!2!)+(1/2019!)
Tính tổng: S = 2020 + 2019 – 2018 – 2017 + 2016 + 2015 – 2014 – 2013 + … + 4 + 3 – 2 – 1 . Vậy S = .................
S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1
= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 ) (có tất cả 2020 : 4 = 505 nhóm)
= 4 + 4 + ... + 4
= 4. 505 = 2020
Vậy S = 2020.
S= 2020
Bạn huyền đúng rồi đó .
hok tốt
Tính:
A=2019/2018 - 2018/2017 + 2017/2016 - 2016/2015
B=1/2019 - 1/2018 + 1/2017 - 1/2016
C=1/2017 - 1/2016 + 1/2015 - 1/2014
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
HÃY TÌM KẾT QUẢ CỦA PHÉP TÍNH "2022+2020-2019-2018-2017+2016+2015 +2014-2013-2012-2011+...+6+5+ 4-3-2-1"
\(...=2022+2020+\left(-2019+2016-2018+2015-2017+2014\right)+...+\left(6-3+5-2+4-1\right)\)
\(=2022+2020+\left(-3-3-3\right)+\left(-3-3-3\right)+...+\left(-3-3-3\right)+\left(-3-2-1\right)\)
\(=2022+2020+\left(-9\right)+\left(-9\right)+...\left(-9\right)+\left(-6\right)\)
\(=2022+2020+\left(-9\right).\left[\left(2019-9\right):6+1\right].\left[\left(2019+6\right)\right]:2+\left(-6\right)\)
\(=2022+2020+\left(-9\right).336.2025:2+\left(-6\right)\)
\(=2022+2020-3061800-6\)
\(=-3057764\)
Tính S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 2016 + 2017 - 2018 - 2019 + 2020
S=(1-2-3+4)+(5-6-7+8)+........+(2013-2014-2015+2016)+(2017-2018-2019+2020)
=0+0+0+.......+0+0=0
Q = < 1/2 + 1/3 + ... + 1/2018 + 1/2019 > * 2019
P = 1/2018 + 2/2017 + 3/2016 + ... + 2016/3 + 2017/2 + 2018/1
Tính < Q - P * 2019 > mũ 2019
< cả phép tính trên có mũ bên ngoài dấu ngoặc là 2019 , dấu / là dấu ngăn cách tử và mẫu nha >
Để xem ai thông minh mà biết cách làm nha , bài này không khó đâu , cũng khá dễ đấy
Tính :
a) \(\text{A}=\left(1\times2\right)^{-1}+\left(2\times3\right)^{-1}+...+\left(2014\times2015\right)^{-1}\).
b) \(\text{B}=\frac{2018+\frac{2017}{2}+\frac{2016}{3}+\frac{2015}{4}+...+\frac{2}{2017}+\frac{1}{2018}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2018}+\frac{1}{2019}}\).
Tính tỉ số A/B biết:
A=1/2 + 1/3 + 1/4 + ... + 1/2017 + 1/2018 + 1/2019
B=2018/1 + 2017/2 + 2016/3 + ... + 2/2017 + 1/2018
\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)
\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)