Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Sang
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Linh Chi
28 tháng 10 2019 lúc 11:32

Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
Ngô Minh Đức
Xem chi tiết
monkey d luffy
Xem chi tiết
Hoàng Phúc
8 tháng 2 2016 lúc 20:29

theo t/c dãy t/s=nhau:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>6x=12=>x=2

thay vào:

\(\frac{2.2+1}{5}=\frac{3y-2}{7}\Rightarrow\frac{5}{5}=\frac{3y-2}{7}\Rightarrow\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow y=3\)

vậy...

Oo Gajeel Redfox oO
8 tháng 2 2016 lúc 21:05

theo tính chất dãy các tỉ số = nhau, đẳng thức trên=

2x+1/5=3y-2/7=(2x+1)+(3y-2)/5+7=2x+3y-1/12=2x+3y-1/6x

=>6x=12=>x=2

=>2x+1/5=2.2+1/5=1=3y-2/7=>3y-2=7=>y=3

Vậy x=2;y=3

 

Bùi Đức Mạnh
15 tháng 12 2017 lúc 20:10

Bài này nên áp dụng tính chất tỷ lệ thức để giải em à 
Theo tính chất tỷ lệ thức : Nếu a/b = c/d = e/f thì a/b = c/d = (a + b)/(c + d) = e/f 
Vậy (2x + 1)/5 = (3y - 2)/7 = (2x +1 + 3y -2 )/(5 + 7) = (2x + 3y - 1)/12 = (2x + 3y - 1)/6x 
=> 6x = 12 => x = 2 
Thay vào: 
=> (3y - 2)/7 = (2x + 1)/5 = (2.2 + 1)/5 = 1 => 3y - 2 = 7 => 3y = 9 => y = 3 
Và (z + 4)/9 = 1 => z + 4 = 9 => z = 5 
Tóm lại : x = 2; y = 3

PIKACHU
Xem chi tiết
hồ anh tú
Xem chi tiết
Arima Kousei
18 tháng 7 2018 lúc 10:19

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

TH 1 : \(2x+3y-1=0\)

\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)

\(\Rightarrow2x+1=0;3y-2=0\)

\(\Rightarrow2x=-1;3y=2\)

\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)

TH 2 : \(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow1=\frac{3y-2}{7}\)

\(\Rightarrow3y-2=7\)

\(\Rightarrow3y=9\)

\(\Rightarrow y=3\)

Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)

Phạm Tuấn Đạt
18 tháng 7 2018 lúc 10:17

Theo t/c dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\Leftrightarrow x=2\)

Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(1=\frac{3y-2}{7}\)

\(\Rightarrow3y=9\Leftrightarrow y=3\)

I don
18 tháng 7 2018 lúc 10:14

ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=> 6x = 12

x = 2

=>  \(\frac{2x+1}{5}=\frac{2.2+1}{5}=\frac{5}{5}=1\)

\(\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)

KL: x = 2; y = 3

Trần Phương Vy
Xem chi tiết
kate winslet
Xem chi tiết
Nguyễn Quỳnh Giao
21 tháng 12 2016 lúc 20:40

x=2

y=3

Quốc Đạt
20 tháng 2 2017 lúc 17:27

Áp dụng TC DCTSBN ta có :

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

Thay x = 2 và 2 TLT đầu ta được :

\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Leftrightarrow\frac{3y-2}{7}=1\)

\(\Rightarrow3y-2=7\Rightarrow y=3\)

Vậy x = 2 và y = 3

Chàng Trai 2_k_7
Xem chi tiết
Trương  Tiền  Phương
12 tháng 1 2020 lúc 17:42

Ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\) \(\left(x\ne0\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)\(=\frac{\left(2x+1\right)+\left(3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}\)\(=\frac{0}{12-6x}=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\3y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{2}{3}\end{cases}}\)

Khách vãng lai đã xóa