tìm x;y;z
a) \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
b) \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
c) \(\dfrac{3x}{8}=\dfrac{3y}{64}=\dfrac{3z}{216}\) và \(2x^2+2y^2-z^2\)
d) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
Bài 1: Cho P= 7+72+73+74+.........+72016. Chứng minh P chia hết cho 400.
Bài 2: Tìm giá trị lớn nhất
a) A= | x - 1004 | - | x+1003 |
b) B = | x - 2018 | - | x - 2017 |
Bài 3 : Cho \(\dfrac{2x-4y}{3}=\dfrac{4z-3y}{2}=\dfrac{3y-2z}{4}\) . Tìm x,y,z biết 2x-y+z = 27
Bài 4: Tìm các số thực x,y,z biết \(\dfrac{x+y-3}{z}=\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{1}{x+y+z}\)
Bài 5 : a) Tính : \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{19.21}\)
b) Chứng minh : \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n-1\right)}\) < \(\dfrac{1}{2}\)
tìm x, y, z khi
1) \(\dfrac{x}{7}=\dfrac{y}{3}\) và x-24=y
2) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}\) và y-x=48
3) \(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}\) và x-y=4009
4) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và x-y-z=28
5) \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\) và 2x+3y-z=-14
6) 3x=y; 5y=4z và 6x+7y+8z=456
Tìm x,y,z khi :
\(\dfrac{x}{7}=\dfrac{y}{3}\) và x - 24 = y
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}\) và y - x = 48
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}\) và x - y = 4009
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và z - y - z =28
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\) và 2x + 3y - z = -14
3x = y ; 5y = 4z và 6x + 7y + 8z = 456
Tìm x ; y ;z :
a. \(\dfrac{x}{3}=\dfrac{y}{4}\) ; 7y = 5z và 2x+3y -z = 186
b. \(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}=\dfrac{1+6y}{6x}\)
\(\dfrac{x}{3}=\dfrac{y}{4}\)avà x-3y = 36
b, \(\dfrac{x}{2}=\dfrac{y}{3}\) và 2x + 3y = 39
c, \(\dfrac{x}{3}=\dfrac{y}{5}\) và 4x- 3y = 12
TÌM X,Y,Z BIẾT:
A.\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) = 3 và 2x = -3y = 4z
B.\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)và x- 2y +3z = 14
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và 2x+3y-z=50
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và 2x + 3y - z = 50