Cho A = 11 + 25 + 39 + 413 + ... + 5042013 + 5052017. Chứng minh rằng A chia hết cho 5
chứng minh
2840=3212.9820
31994+31993-31992 (chia hết cho 11)
413+325-88 (chia hét cho 10)
2+22+23 +...+260 (chia hết cho 3)
a) Ta có: \(32^{12}\cdot98^{20}\)
\(=2^{60}\cdot2^{20}\cdot7^{40}\)
\(=2^{80}\cdot7^{40}\)
\(=\left(2^2\cdot7\right)^{40}=28^{40}\)(đpcm)
b) Ta có: \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}\cdot11⋮11\)
Cho A= 11 mũ 9 + 11 mũ 8 +............+ 11+1 Chứng minh rằng A chia hết cho 5
cho B=2+2 mũ 2 + 2 mũ 3 +.................+ 2 mũ 20 chứng minh rằng B chia hết cho 5
Giúp mình với
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
A=(1+11+11.1
thôi cậu tự làm dễ mà
Chứng minh rằng
a)A = 1+3+3²+....+311 chia hết cho 13
b)B= 1+2+2²+2³+....+239 chia hết cho 15
c)5n+2chia hết cho n-10
Mik gợi ý cho bạn nhé:
Câu a bạn nhóm 3 số 1 nhóm (tổng có 4 nhóm bạn nhé)
Câu b bạn nhóm 4 số 1 nhóm (tổng có 10 nhóm bạn nhé)
bài 1: tìm x biết:
275x chia hết cho5; 25 và 125
Bài 2: chứng minh rằng: 3n-1 chia hết cho 2 (n thuộc N)
Bài 3: chứng minh rằng số dạng aaaaaa chia hết cho 37 037
Bài 4: chứng minh rằng tích 2 số chẵn liên tiếp chia hết cho 8
Bài 5: A=2+22+...+260 chứng minh rằng A chia hết cho 3; và 15
Bài 6:chứng minh n2+n+1 ko chia hết cho 4 và 5
Bài 7: chứng minh ad+cd+ef chia hết cho 11 thì abcdef chia hết cho 11
cho ab+cd+eg chia hết cho 11
a, chứng minh rằng abcdeg chia hết cho 11
b, cho abcdeg chia hết cho 11 . Chứng minh rằng ab+cd+eg chia hết cho 11
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
Cho A=11^9+11^8+11^7+....+11+1.Chứng minh rằng A chia hết cho 5
=>11A=11^10 + 11^9 +... +11^2+11
=>10A=11^10-1
=>A=(11^10-1) :10
Ta thấy 11^10 tận cùng =1
=>1-1=0=>0 chia hết cho 5
Cho A = 11^9+11^8+11^7+....+11+1.
a, Chứng minh rằng A chia hết cho 5
b, Chứng mình rằng với mọi số tự nhiên n thì n^2+n+1 ko chia hết cho 4
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
hok tốt
MỜI CÁC ANH CHỊ LÀM HỘ:
a) cho 2a+5 chia hết cho 7. Chứng minh rằng 10a+11 chia hết cho 7
b) cho A= 4+42+43+.....+423+424. Chứng minh rằng A chia hết cho 5, A chia hết cho 20, A chia hết cho 21, A chia hết cho 420
THANKS ^_^@!
Cho a,n thuộc N*, biết rằng an chia hết cho 5
chứng minh rằng (a+150 ) chia hết cho 25
ta có: a có thể bằng 5 vì a chia hết cho 5
5^n,ví dụ n là 2 thì bằng 25
5^n có thể chia hết cho 25
ta có 150 cũng chia hết cho25
vâỵ a+150 chia hết cho 25
a mũ n chia hết cho 5 => a = 5k ( k thuộc N* )
Do đó a mũ 2 + 150= ( 5k) tất cả mũ 2 + 25 . 6
= 25 . ( k+ 6) chia hết cho 25
cho A=11^9+11^8+11^7+…+11+1
chứng minh rằng A chia hết cho 5