Cho a,b,c cùng thuộc N* và S=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
CMR S nhỏ hơn hoặc =6
cho a,b,c thuộc N* và S=\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{a+c}{b}\).chứng minh rằng S lớn hơn hoặc bằng 6,
Tìm giá trị nhỏ nhất của S
bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương
Ta Có S = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}=\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)
Vì mỗi ngoặc sẽ lớn hơn hoặc bằng 2 => s lớn hơn hoặc băng 6 (đpcm)
Cho a; b; c \(\in\) N* và S = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\).
a) Chứng minh S > hoặc = 6
b) Tìm GTNN (giá trị nhỏ nhất) của S.
a) \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)
\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Tổng của hai phân số dương nghịch đảo bao giờ cũng lớn hơn hoặc bằng 2 nên :
\(\frac{a}{c}+\frac{c}{a}\ge2\) ; \(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{b}{a}+\frac{a}{b}\ge2\)
\(\Rightarrow S\ge2+2+2=6\)
b) \(S\ge6\) nên GTNN của S là 6 ( \(\Leftrightarrow\) a = b =c )
a] Ta có : \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\); \(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
\(\Rightarrow S\ge2+2+2=6\)
b] Ta có \(S=6\Leftrightarrow a=b=c\)
GTNN của S =6
Em trả lời trước nhé nhưng chưa hiện lên O-L-M đừng chọn bạn kia vội !
Cho a, b, c \(\inℕ^∗\) và S= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
a) CMR: S\(\ge\)6
b) Tìm giá trị nhỏ nhất (GTNN) của S
* Chứng minh tổng hai phân số dương nghịch đảo lớn hơn hoặc bằng 2 :
Cho phân số : \(\frac{a}{b}\) \(\left(a,b\inℕ^∗\right)\)
\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)
Do đó :
\(\frac{a}{b}+\frac{b}{a}-2\ge0\)\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}\ge2\) ( điều phải chứng minh )
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Vì tổng của hai phân số nguyên dương nghịch đảo sẽ luôn lớn hơn hoặc bằng 2 nên ta được :
\(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\\\frac{b}{a}+\frac{a}{b}\ge2\end{cases}}\)
Cộng theo vế ba đẳng thức trên ta có :
\(\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{a}{b}\ge2+2+2\)
\(\Leftrightarrow\)\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
\(\Leftrightarrow\)\(S\ge6\)
Vậy \(S\ge6\)
\(b)\) Vì \(S\ge6\) nên \(S_{min}=6\) khi \(a=b=c\)
Chúc bạn học tốt ~
Bạn ơi, có Chứng minh đc tại sao tổng của 2 phân số dương nghịch đảo lại lớn hơn 2 ko
Cho a,b,c thuộc N* và S=a+b/c+b+c/a+c+a/b
CMR:S nhỏ hơn hoặc bằng 6
CMR : \(\frac{n}{4}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Với n>4, a,b,c,n thuộc N*a // b, b // c, c // aCho a, b, c \(\inℤ\) và \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
a) Tính giá trị nhỏ nhất của S
b) Chứng minh rằng S < 6
Cho a,b,c thuộc N*
S= a+b/c + b+c/a + c+a/b
Chứng minh rằng S lớn hơn hoặc bằng 6. TÌm giá trị nhỏ nhất của S
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
Áp dụng BĐT cô si ta có:\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)
LÀm tương tự ta có:
\(\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\\\frac{a}{c}+\frac{c}{a}\ge2\\\frac{c}{b}+\frac{b}{c}\ge2\end{cases}}\Rightarrowđpcm\)
Vậy GTNN của S =6 khi a=b=c
\(a,b\inℕ^∗\)và S = \(\frac{a+b}{a}+\frac{b+c}{a}+\frac{c+a}{b}.\)CMR S \(\ge\)6
Cho a,b,c thuộc N* và S=\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)
Chứng minh rằng:
a) \(\frac{a}{b}\)+\(\frac{b}{a}\)>2 b)S > 6
Làm câu b :
S = (a + b)/c + (b + c)/a + (c + a)/b
S = (a + b)/c + 1 + (b + c)/a + 1 + (c + a)/b + 1 - 3
S = (a + b + c)/c + (a + b + c)/a + (a + b + c)/b - 3
S = (a + b + c)(1/a + 1/b + 1/c) - 3
Áp dụng bđt Cosi cho 3 số dương ta có:
. a + b + c ≥ 3.³√(a.b.c)
. 1/a + 1/b + 1/c ≥ 3.³√(1/a.1/b.1/c)
--> S ≥ 3.³√(a.b.c).3.³√(1/a.1/b.1/c) - 3 = 9 - 3 = 6 --> đ.p.c.m
Dấu " = " xảy ra ⇔ a = b = c