Chứng tỏ rằng tổng của các số tự nhiên có 3 chữ số chia hết cho 2 và 5
Bài 1 : Tìm chữ số 20a20a20a chia hết cho 7
Bài 2: cho 3 số tự nhiên khác nhau và khác 0 . Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chữ số ấy . chứng minh rằng tổng của chúng chia hết cho 6 và 37
TREN MẠNG ĐỪNG CHỬI LUNG TUNG
Chứng minh rằng một số tự nhiên có hai chữ số chia hết cho 7 khi và chỉ khi tổng của chữ số hàng chục bằng 5 lần chữ số hàng đơn vị chia hết cho 7 ?
một số tự nhiên a và 5 lần số đó có tổng các chữ số như nhau
chứng minh rằng a chia hết 9
Câu 1: Tìm số có 2 chữ số biết số đó gấp 2 lần tích của các chữ số của nó.
Câu 2: Tìm số lớn nhất có 3 chữ số thỏa mãn điều kiện số đó chia hết cho 9 và tổng các chữ số hàng trăm với chữ số hàng đơn vị chia hết cho 5.
Câu 3:
A: Tại sao 2 số tự nhiên có tổng không chia hết cho 2 thì tích của chúng lại chia hết cho 2?
B: Số 2006 có thể là tích của ba số tự nhiên liên tiếp hay không?
Bạn nào biết câu nào thì giúp mình làm câu ấy nha.
âu 1:
Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:
AB = 2 × A × B
Để giải phương trình này, ta thực hiện các bước sau:
Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99. Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát. Khi đó, ta có A < 5 (nếu A ≥ 5 thì AB ≥ 50, vượt quá giới hạn của số có hai chữ số). Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.Kết quả là AB = 16 hoặc AB = 36.
Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.
Câu 2:
Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:
ABC chia hết cho 9. A + C chia hết cho 5.Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:
Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương). Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15. Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9. Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990. Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.
Câu 3:
A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:
ab = 2m × 2n = 2(m + n)
Vì m + n là một số tự nhiên, nên ab chia hết cho 2.
B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n
Một số có ba chữ số có tổng các chữ số bằng 7. Chứng tỏ rằng số đó chia hết cho 7 khi và chỉ khi chữ số hàng chục bằng chữ số hàng đơn vị.
Gọi số có 3 chữ số mà có chữ số hàng chục bằng chữ số hàng đơn vị là abb(0<1;b<=9)
ta có tổng các chữ số của nó =7 nên: a+2b=7=> a=7-2b(1)
Ta có: abb= a.100+b.10 +b Thay a= 7-2b vào ta có
abb= (7-2a).100+b.10+b
=700-200b+11b
=700-189b
Vì 700\(⋮\)7 và 189b\(⋮\)7 nên 700-189b \(⋮\)7
vậy abb\(⋮\)7
Vậy số có 3 chữ số có tổng các chữ số =7 và có chữ số hàng chục = chữ số hàng đơn vị thì số đó chia hết cho 7
Chứng tỏ rằng :
Tổng của tất cả các số có 3 chữ số là một số vừa chia hết cho 2 vừa chia hết cho 5
A = 100 + 101 + ...... + 999
giải rõ giúp mik nhja
bài này giải zậy hã
Ta có biểu thức sau có số hạng là :
( 999 - 100 ) + 1 + 900 ( số hạng )
A = ( 100 + 999 ) . 900 : 2 = 494550
\(494550chia\)\(het\)\(cho2\)
\(494550chia\)\(het\)\(cho5\)
Có tất cả số số có 3 chữ số chia hết cho 2 và 5 là :
(990 - 100 ) / 10 +1 = 90 (số )
Tổng của các số có 3 chữ số chia hết cho 2 và 5 là :
( 990 + 100 ) x 90 / 2 = 49050
A có số số là : ( 999 - 100 ) / 1 + 1 = 900 ( số )
A là :
(999 + 100 ) x 900 / 2 = 494550
Tìm số tự nhiên có hai chữ số, các chữ số giống nhau, biết rằng số đó chia hết cho 2 và chia hết cho 5 thi dư 3
Tìm số tự nhiên có hai chữ số, các chữ số giống nhau, biết rằng số đó chia hết cho 2 và chia hết cho 5 thi dư 3.
số tự nhiên chia 5 dư 3 có tận cùn là 3 hoặc 8 mà số đó chia hết cho 2 nên số đó là 88
chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 3 stn liên tiếp là: a;a+1;a+2
Ta có : a+a+1+a+2=3a+(1+2)=3a+3
Mà 3a chia hết cho 3 ; 3 chia hết cho 3
Nên 3a+3 chia hết cho 3
Vậy tổng 3 stn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2
ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3
Vậy 3 số tự nhiên liên tiếp chia hết cho 3
Giải :
Tổng 3 STN liên tiếp bằng :
A + ( A +1 ) + ( A + 2 )
= ( A + A + A ) + ( 1 + 2 )
= 3A + 3
Mà 3A chia hết cho 3; 3 chia hết cho 3
\(\Rightarrow\)A + ( A + 1 ) + ( A + 2 ) chia hết cho 3 với mọi A ( đpcm ).