cho a,b,c là độ dâì 3 cạnh tam giác. cm
a(b-c)^2+b(c-a)^2+c(a+b)^2>a^3+b^3+c^3
cho abc là độ dài 3 cạnh tam giác chứng minh a(b-c)^2 + b(c-a)^2 + c(a+b)^2 > a^3 + b^3 + c^3
đề kiểu gì vậy bạn tui nghĩ là thế này
áp dụng BDT tam giác
\(=>\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\)\(=>\)\(\left(a+b-c\right)\left(a+c-b\right)>0< =>\left[a+\left(b-c\right)\right]\left[a-\left(b-c\right)\right]>0\)
\(=>a^2-\left(b-c\right)^2>0=>a^2>\left(b-c\right)^2=>\left(b-c\right)^2< a^2\)
\(=>a\left(b-c\right)^2< a^3\left(1\right)\)
cminh tương tự \(=>b\left(c-a\right)^2< b^3\left(2\right)\)
\(=>c\left(a-b\right)^2< c^3\left(3\right)\)
(1)(2)(3)\(=>VT< a^3+b^3+c^3\)
cho a b c là độ dài 3 cạnh tam giác chứng minh a^2*b+b^2*c+c^2*a+c*a^2+b*c^2+a*b^2-a^3-b^3-c^3>0
Cho a,b, c là độ dài 3 cạnh 1 tam giác chứng minh
a.(b-c)^2 +b.(c-a)^2 +c.(a+b)^2 >a^3+b^3+c^3
cho a b c là độ dài 3 cạnh tam giác chứng minh a^3(b^2-c^2)+ b^3(c^2-a^2) + c^3(a^2-b^2) <0 với a<b<c
Cho a,b,c là độ dài 3 cạnh 1 tam giác hãy chứng minh;
a^3*(b^2-c^2)+ b^3*(c^2-a^2)+ c^3*(a^2-b^2)
với a<b<c
Choa,b, c là độ dài 3 cạnh 1 tam giác
a.(b-c)^2+b.(c-a)^2+c.(a+b)^2》a^3+b^3+c^3
cho a,b,c là độ dài 3 cạnh tam giác. CMR a(b-c)2+b(c-a)2+c(a+b)2>a3+b3+c3
Ta thấy trong tam giác tổng độ dài hai cạnh luôn lớn hơn cạnh còn lại
Ta có: \(a+b>c\)
\(\Rightarrow\left(a+b\right)^2>c^2\)
\(\Rightarrow c\left(a+b\right)^2>c^3\)
Tương tự:
\(a\left(b+c\right)^2>a^3\)
\(b\left(a+c\right)^2>b^3\)
do đó \(a\left(b+c\right)^2+b\left(a+c\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\left(ĐPCM\right)\)
Ta có:
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3\)
\(=\left[a\left(b-c\right)^2-a^3\right]+\left[b\left(c-a\right)^2-b^3\right]+\left[c\left(a+b\right)^2-c^3\right]\)
\(=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)
\(=a\left(b-c-a\right)\left(b-c+a\right)+b\left(c-a-b\right)\left(c-a+b\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=a\left(b-c-a\right)\left(b-c+a\right)-b\left(c-a-b\right)\left(a+b-c\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=\left(a+b-c\right)\left[a\left(b-c-a\right)-b\left(c-a+b\right)+c\left(a+b+c\right)\right]\)
\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2+ca+cb+c^2\right)\)
\(=\left(a+b-c\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a+b-c\right)\left[c^2-\left(a^2-2ab+b^2\right)\right]\)
\(=\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]\)
\(=\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)
vì a, b, c là cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b-c>0\\c-a+b>0\\c+a-b>0\end{cases}}\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3>0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)\(\left(đpcm\right)\)
chứng minh rằng nếu a,b,c là độ dài 3 cạnh của tam giác thì a(b-c)^2 +b(c-a)^2 +c(a+b)^2 >a^3 +b^3 +c^3
cho a b c là độ dài 3 cạnh tam giác chứng minh a^2/b+c-a + b^2/a+c-b+c^2/a+b-c>= a+b+c
ta có \(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+a+c-b+a+b-c}\) (BĐT svacxơ)
=>A\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\) (ĐPCM)
^_^