Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham hoa
Xem chi tiết
missing you =
7 tháng 7 2021 lúc 17:53

đề kiểu gì vậy bạn tui nghĩ là thế này

áp dụng BDT tam giác

\(=>\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\)\(=>\)\(\left(a+b-c\right)\left(a+c-b\right)>0< =>\left[a+\left(b-c\right)\right]\left[a-\left(b-c\right)\right]>0\)

\(=>a^2-\left(b-c\right)^2>0=>a^2>\left(b-c\right)^2=>\left(b-c\right)^2< a^2\)

\(=>a\left(b-c\right)^2< a^3\left(1\right)\)

cminh tương tự \(=>b\left(c-a\right)^2< b^3\left(2\right)\)

\(=>c\left(a-b\right)^2< c^3\left(3\right)\)

(1)(2)(3)\(=>VT< a^3+b^3+c^3\)

Vũ Đăng Trung
Xem chi tiết
NGUYEN MAI TRANG
12 tháng 3 2017 lúc 13:10

LÀM BẠN NHA

khải nguyên gia tộc
Xem chi tiết
Truong Quang Trong
Xem chi tiết
khải nguyên gia tộc
Xem chi tiết
khải nguyên gia tộc
Xem chi tiết
Dương Phan Khánh Vũ
Xem chi tiết
Nguyễn Tấn Phát
14 tháng 7 2019 lúc 15:08

Ta thấy trong tam giác tổng độ dài hai cạnh luôn lớn hơn cạnh còn lại

Ta có: \(a+b>c\)

\(\Rightarrow\left(a+b\right)^2>c^2\)

\(\Rightarrow c\left(a+b\right)^2>c^3\)

Tương tự: 

\(a\left(b+c\right)^2>a^3\)

\(b\left(a+c\right)^2>b^3\)

do đó \(a\left(b+c\right)^2+b\left(a+c\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\left(ĐPCM\right)\)

Ta có:

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3\)

\(=\left[a\left(b-c\right)^2-a^3\right]+\left[b\left(c-a\right)^2-b^3\right]+\left[c\left(a+b\right)^2-c^3\right]\)

\(=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)

\(=a\left(b-c-a\right)\left(b-c+a\right)+b\left(c-a-b\right)\left(c-a+b\right)+c\left(a+b-c\right)\left(a+b+c\right)\)

\(=a\left(b-c-a\right)\left(b-c+a\right)-b\left(c-a-b\right)\left(a+b-c\right)+c\left(a+b-c\right)\left(a+b+c\right)\)

\(=\left(a+b-c\right)\left[a\left(b-c-a\right)-b\left(c-a+b\right)+c\left(a+b+c\right)\right]\)

\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2+ca+cb+c^2\right)\)

\(=\left(a+b-c\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(a+b-c\right)\left[c^2-\left(a^2-2ab+b^2\right)\right]\)

\(=\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]\)

\(=\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)

vì a, b, c là cạnh của 1 tam giác

\(\Rightarrow\hept{\begin{cases}a+b-c>0\\c-a+b>0\\c+a-b>0\end{cases}}\)

\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3>0\)

\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)\(\left(đpcm\right)\)

Song tử
Xem chi tiết
hương đinh
Xem chi tiết
vũ tiền châu
6 tháng 1 2018 lúc 11:50

ta có \(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+a+c-b+a+b-c}\) (BĐT svacxơ)

=>A\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\) (ĐPCM)

^_^