\(x^4+2005x^2+2004x+2005\)
Phân tích đa thức thành nhân tử
Phân tích đa thức thàng nhân tử
x4 + 2005x2 + 2004x + 2005
x4 + 2005x2 + 2004x + 2005
=x4-x+2005x2+2005x+2005
=x(x3-1)+2005.(x2+x+1)
=x(x-1)(x2+x+1)+2005.(x2+x+1)
=(x2+x+1)[x(x-1)+2005]
=(x2+x+1)(x2-x+2005)
Phân tích thành nhân tử x4 + 2005x2 +2004x + 2005
x4 + 2005x2 + 2004x + 2005
=x4+2005x2+2005x-x+2005
=x4-x+2005x2+2005x+2005
=x(x3-1)+2005.(x2+x+1)
=x(x-1)(x2+x+1)+2005.(x2+x+1)
=(x2+x+1)[x(x-1)+2005]
=(x2+x+1)(x2-x+2005)
Phân tích đa thức thành nhân tử :
\(x^4+2004x^2+2003x+2004\)
\(x^4+2004x^2+2003x+2004\)
\(=x^4+2004x^2+2004x-x+2004\)
\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)
tìm cặp số a,b thoả mãn điều kiện; 3b/a^2-4=1-125a-3b/6a+13=1-125a
Xác định dư trong phép chia đa thức f(x)=2004x37+2005x13+x+2005 cho đa thức x2+1
a)phân tích đa thức thành nhân tử:
\(x^4+2005x^2+2004x+2005\)
b)GTLN của:
\(-x^2-10y^2+6xy-2x+10y+9\)
a, ta có : \(x^4+2005x^2+2004x+2005\)
=\(x^4-x+2005x^2+2005x+2005\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2005\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2005\right)\)
b, ta có \(-x^2-10y^2+6xy-2x+10y+9\)
=\(-\left(x^2+1+2x-6xy+9y^2-6y\right)-y^2+4y-4+13\)=\(13-\left(x-3y+1\right)^2-\left(y-2\right)^2\le13\forall x\)
Vậy Max=13 \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
phân tích đa thức thành nhân tử : x2 - x - 2004 + 2005
tim x
a) x4 +2005x2 +2004x+2005
phân tích đa thức thành nhân tử : x2 - x - 2004 . 2005
Phân tích thành nhân tử :
\(x^4+2004x^2+2003x+2004\)
\(x^4+2004x^2+2003x+2004\)
\(=x^4-x+2004x^2+2004x+2004\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)
\(x^4+2004x^2+2003x+2004\)
\(=x^4+2004x^2+2004x-x+2004\)
\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)