Cho S=abc + bca + cab
Chứng minh rằng S ko phải là số chính phương
cho S = abc + bca + cab
Chứng minh rằng S không phải là số chính phương
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.
Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.
Vậy\(\sqrt{a}\) là số vô tỉ.
Giả sử √a là số hữu tỉ thì √a viết được thành
Do a không phải là số chính phương nên \(\frac{m}{n}\)không phải là số tự nhiên, do đó n > 1.
Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
Cho S= 1+3+3^2+3^3+...+3^2012.
a, S có chia hết cho 4 ko? Vì sao?
b,2.S có phải là số chính phương ko? Vì sao?
S=1+3+\(3^2\)+\(3^3\)+.....+\(3^{2012}\)
S=(1+3)+(\(3^2\)+\(3^3\))+.......+(\(3^{2011}\)+\(3^{2012}\))
S=4+\(3^2\).(1+3)+.......+\(3^{2011}\)(1+3)
S=4+4.\(3^2\)+....+4.\(3^{2011}\)
S=4.(1+\(3^2\)+.....+\(3^{2011}\))\(⋮\)4
Vậy S chia hết cho 4
\(S=1+3+3^2+3^3+...+3^{2012}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2010}+3^{2011}\right)+3^{2012}\)
\(S=4+3^2\left(1+3\right)+...+3^{2010}\left(1+3\right)+3^{4\times503}\)
\(S=4+3^2\times4+...+3^{2010}\times4+\left(.....1\right)\) (các chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1)
mà \(\left(.....1\right)⋮̸4\)
\(\Rightarrow S⋮̸4\)
Chúc bạn học tốt
\(S=1+3+3^2+3^3+...+3^{2012}\)
\(3S=3+3^2+3^3+3^4+...+3^{2013}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+3^{2013}\right)-\left(1+3+3^2+3^3+...+3^{2012}\right)\)
\(2S=3^{2013}-1\)
\(2S=3^{4\times503}\times3-1\)
\(2S=\left(.....1\right)\times3-1\)
\(2S=\left(.....3\right)-1\)
\(2S=\left(.....2\right)\)
Vì 2S có chữ số tận cùng là 2 nên không là số chính phương
Chúc bạn học tốt
a) chứng minh rằng số có dạng n6 - n4 + 2n3 + 2n2 trong đó n > 1 và là số tự nhiên không phải là số chính phương.
b) giả sử N = 1.3.5.7...2009.2011
Chứng minh rằng trong 3 số nguyên liên tiếp 2N - 1, 2N, 2N + 1 không số nào là số chính phương.
Cho A=102012+102011+102009+8
Chứng minh rằng A chia hết cho 24
Chứng minh rằng A không phải là số chính phương
\(A=10^{2012}+10^{2011}+10^{2009}+8\)
\(A=10^{2009}\left(10^3+10^2+10^1+8\right)\)
\(A=10^{2009}.1111+8\)
\(A=11110.....8\)( 2009 c/s 0 )
Không có số chính phương nào có tận cùng là 8
\(\Rightarrow\) A không phải là số chính phương.
A có ba chữ số tận cùng là 008 nên \(A⋮8\) ( 1 )
A có tổng các chữ số là 9 nên \(A⋮3\) ( 2 )
Từ (1)(2) kết hợp với ( 3,8 )=1 \(\Rightarrow A⋮24\)
CHỨNG MINH RẰNG NẾU SỐ TỰ NHIÊN A KO LÀ SỐ CHÍNH PHƯƠNG THÌ CĂN A LÀ SỐ VÔ TỈ
Cho biểu thức A =1+19+93^2015+1993^2016 . Hỏi A có phải là số chính phương ko???
(Hình như A là số chính phương phải không các bạn , giải hộ mk vs)
Cho n là tích của tất cả các số nguyên tố không vượt quá 1 số cho trước nào đó. Chứng minh rằng (n - 1) và (n + 1) đều ko thể là số chính phương.
Ta có: n = 2.3.5.7.11.13. ...
Dễ thấy n chia hết cho 2 và không chia hết cho 4.
-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.
Vì n chẵn nên n+1 lẻ mà n+1= a2 nên a lẻ, giả sử a=2k+1, khi đó:
n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.
Vậy n+1 không chính phương.
-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.
Vậy n-1 không chính phương
(Hình như bài này của lớp 8 nha)