Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2017 lúc 16:58

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 5 2019 lúc 3:56

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x  - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3π/2.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 11 2019 lúc 2:44

Đáp án:B.

Với f(x) =  x 3  + 5x + 6 thì vì f'(x) = 3 x 2  + 5 > 0, x R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2019 lúc 2:01

Đáp án: C

Vì f'(x) = ( x 5  + x 3  - 7)' = 5 x 4  + 3 x 2  ≥ 0, ∀x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x0 ∈ (0;2) để f(x0) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.

Cách khác: Phương trình 3 sin 2 x - cos 2 x + 5 = 0

⇔ 3 sin 2 x  +  sin 2 x  + 4 = 4( sin 2 x  + 1) = 0, vô nghiệm

Các phương trình  x 2  - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình  x 5 +  x 3  - 7 = 0 có nghiệm duy nhất trên R.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2019 lúc 15:30

Đáp án:B.

Với f(x) =  x 3  + 5x + 6 thì vì f'(x) = 3 x 2  + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 14:13

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2017 lúc 13:52

Đáp án D

Đặt m = 3 a  ta có  log m 11 + log 1 7 x 2 + m x + 10 + 4 . log m x 2 + m x + 12 ≥ 0.

Dk: m > 0 , m ≠ 1 , x 2 + m x + 10 ≥ 0  

Bpt đã cho tương đương với  1 − log 7 x 2 + m x + 10 + 4 . log 11 x 2 + m x + 12 log m 11 ≥ 0 *

Đặt u = x 2 + m x + 10 , u ≥ 0  

+ với 0 < m < 1 : * ⇔ f u = log 7 u + 4 . log 11 u + 2 ≥ 1  

f 9 = 1   và f u  là hàm số đồng biến nên ta có

f u ≥ f 9 ⇔ x 2 + m x + 10 ≥ 9 ⇔ x 2 + m x + 1 ≥ 0  

Vì phương trình trên có Δ = m 2 − 4 < 0  với 0 < m < 1  nên phương trình vô nghiệm

+Với m > 1 : f u ≤ 1 = f 9 ⇔ 0 ≤ u ≤ 9 ⇔ 0 ≤ x 2 + m x + 10 ≤ 9 ⇔ x 2 + m x + 10 ≥ 0 1 x 2 + m x + 1 ≤ 0 2  

Xét phương trình x 2 + m x + 1 ≤ 0  có  Δ = m 2 − 4 < 0

Nếu m > 2 ⇒ Δ > 0 ⇒ p t  vô nghiệm 1 , 2 ⇒  bpt vô nghiệm

Nếu m = 2 ⇒ p t 2  trên có 2 nghiệm thỏa mãn x = − 1 ⇒  bpt có nhiều hơn 1 nghiệm 

Nếu m = 2 ⇒ p t 2  có nghiệm duy nhất  x = − 1 ⇒  bpt có nghiệm duy nhất   x = − 1

Vậy gtct của m là m = 2 ⇒ a = 3 2  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2017 lúc 4:53

Đáp án C

Giải phương trình: 

Ta có phương trình

†™…£ãñ§Φ†µ♫™†
Xem chi tiết
Phạm Tuấn Đạt
8 tháng 1 2019 lúc 22:48

\(\hept{\begin{cases}x+ky=3\\kx+4y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{3-x}{k}\left(k\ne0\right)\\kx+4.\frac{3-x}{k}=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{3-x}{k}\\\frac{k^2x+12-4x}{k}=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k^2x+12-4x-6k=0\\y=\frac{3-x}{k}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\left(k^2-4\right)-6\left(k-2\right)=0\\y=\frac{3-x}{k}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(k-2\right)\left[x\left(k+2\right)-6\right]=0\\y=\frac{3-x}{k}\end{cases}}\)

a, Với \(k\ne2\)thì Pt có nghiệm là \(x=\frac{6}{k+2}\)

Vậy Pt có nghiệm duy nhất : \(x=\frac{6}{k+2};y=\frac{3-\frac{6}{k+2}}{k}=\frac{3k}{k}=3\)

b,Với \(k=2\)thì pt có vô số nghiệm

ms lp 8 , có chi thông cảm

Nguyễn Linh Chi
9 tháng 1 2019 lúc 10:44

x+ky=3

=> x=3-ky thế vào phương trình thứ 2

=> k( 3-ky)+4y=6 <=> \(\left(4-k^2\right)y=6-3k\) (3)

+) \(4-k^2=0\Leftrightarrow k=\pm2\)

Với k=2, phương trình 3 trở thành: 0.y=0 => phương trình có vô số nghiệm => hệ ban đầu có vô số nghiệm

Với k=-2, phương trình (3) trở thành: 0.y=12 => phương trình vô nghiệm => hệ ban đầu vô nghiệm

+) \(k\ne\pm2\)Phương trình (3) <=>  y=\(\frac{3}{2+k}\)=> x=3-ky=\(3-\frac{3k}{k+2}=\frac{6}{k+2}\)

Hệ phương trình có nghiệm duy nhất (x, y) tương ứng như trên

Kết luận 

a) k khác 2, -2

b) k=2

c) k =-2