Phương trình nào sau đây có nghiệm duy nhất trên R?
A. 3 sin 2 x + c o s 2 x + 5 = 0 B. x 2 + 5x + 6 = 0
C. x 5 + x 3 - 7 = 0 D. 3tanx - 4 = 0
Phương trình nào sau đây có nghiệm duy nhất trên R?
A. (x - 5)( x 2 - x - 12) = 0 B. - x 3 + x 2 - 3x + 2 = 0
C. sin 2 x - 5sinx + 4 = 0 D. sinx - cosx + 1 = 0
Đáp án: B.
Các phương trình còn lại có nhiều hơn một nghiệm:
(x - 5)( x 2 - x - 12) = 0 có các nghiệm x = 5, 4, -3.
sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm
sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2
Phương trình nào sau đây có nghiệm duy nhất trên R?
A. (x - 5)( x 2 - x - 12) = 0 B. - x 3 + x 2 - 3x + 2 = 0
C. sin 2 x - 5sinx + 4 = 0 D. sinx - cosx + 1 = 0
Đáp án: B.
Các phương trình còn lại có nhiều hơn một nghiệm:
(x - 5)( x 2 - x - 12) = 0 có các nghiệm x = 5, 4, -3.
sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm
sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3π/2.
Phương trình nào sau đây có nghiệm duy nhất trên R?
Đáp án:B.
Với f(x) = x 3 + 5x + 6 thì vì f'(x) = 3 x 2 + 5 > 0, ∀x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.
Phương trình nào sau đây có nghiệm duy nhất trên R?
A. 3 sin 2 x - cos 2 x + 5 = 0 B. x 2 + 5x + 6 = 0
C. x 5 + x 3 - 7 = 0 D. 3tanx - 4 = 0
Đáp án: C
Vì f'(x) = ( x 5 + x 3 - 7)' = 5 x 4 + 3 x 2 ≥ 0, ∀x ∈ R (dấu "=" xảy ra ⇔ x = 0). Suy ra f(x) đồng biến trên R. Mặt khác f(0) = -7, f(2) = 32 + 8 - 7 = 33 > 0. Hàm f(x) liên tục trên đoạn [0;2] nên tồn tại x0 ∈ (0;2) để f(x0) = 0. Suy ra f(x) = 0 có nghiệm duy nhất trên R.
Cách khác: Phương trình 3 sin 2 x - cos 2 x + 5 = 0
⇔ 3 sin 2 x + sin 2 x + 4 = 4( sin 2 x + 1) = 0, vô nghiệm
Các phương trình x 2 - 5x + 6 = 0 và 3tanx - 4 = 0 có nhiều hơn một nghiệm. Từ đó suy ra phương trình x 5 + x 3 - 7 = 0 có nghiệm duy nhất trên R.
Phương trình nào sau đây có nghiệm duy nhất trên R?
A. x 2 - 7x + 12 = 0 B. x 3 + 5x + 6 = 0
C. x 4 - 3 x 2 + 1 = 0 D. 2sinx. cos 2 x - 2sinx - cos 2 x + 1 = 0
Đáp án:B.
Với f(x) = x 3 + 5x + 6 thì vì f'(x) = 3 x 2 + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.
Chứng minh các phương trình sau đây có nghiệm duy nhất
a) \(3\left(\cos x-1\right)+2\sin x+6x=0\)
b) \(4x+\cos x-2\sin x-2=0\)
c) \(-x^3+x^2-3x+2=0\)
d) \(x^5+x^3-7=0\)
Cho bất phương trình log 3 a 11 + log 1 7 x 2 + 3 a x + 10 + 4 . log 3 a x 2 + 3 a x + 12 ≥ 0. Giá trị thực của tham số a để bất phương trình trên có nghiệm duy nhất thuộc khoảng nào sau đây?
A. (1;2)
B. (-1;0)
C. 2 ; + ∞
D. (0;1)
Đáp án D
Đặt m = 3 a ta có log m 11 + log 1 7 x 2 + m x + 10 + 4 . log m x 2 + m x + 12 ≥ 0.
Dk: m > 0 , m ≠ 1 , x 2 + m x + 10 ≥ 0
Bpt đã cho tương đương với 1 − log 7 x 2 + m x + 10 + 4 . log 11 x 2 + m x + 12 log m 11 ≥ 0 *
Đặt u = x 2 + m x + 10 , u ≥ 0
+ với 0 < m < 1 : * ⇔ f u = log 7 u + 4 . log 11 u + 2 ≥ 1
f 9 = 1 và f u là hàm số đồng biến nên ta có
f u ≥ f 9 ⇔ x 2 + m x + 10 ≥ 9 ⇔ x 2 + m x + 1 ≥ 0
Vì phương trình trên có Δ = m 2 − 4 < 0 với 0 < m < 1 nên phương trình vô nghiệm
+Với m > 1 : f u ≤ 1 = f 9 ⇔ 0 ≤ u ≤ 9 ⇔ 0 ≤ x 2 + m x + 10 ≤ 9 ⇔ x 2 + m x + 10 ≥ 0 1 x 2 + m x + 1 ≤ 0 2
Xét phương trình x 2 + m x + 1 ≤ 0 có Δ = m 2 − 4 < 0
Nếu m > 2 ⇒ Δ > 0 ⇒ p t vô nghiệm 1 , 2 ⇒ bpt vô nghiệm
Nếu m = 2 ⇒ p t 2 trên có 2 nghiệm thỏa mãn x = − 1 ⇒ bpt có nhiều hơn 1 nghiệm
Nếu m = 2 ⇒ p t 2 có nghiệm duy nhất x = − 1 ⇒ bpt có nghiệm duy nhất x = − 1
Vậy gtct của m là m = 2 ⇒ a = 3 2
Nghiệm của phương trình 2 sin x=1 có dạng nào sau đây?
Đáp án C
Giải phương trình:
Ta có phương trình
Với giá trị nào của k thì hệ phương trình sau đây:\(\hept{\begin{cases}x+ky=3\\kx+4y=6\end{cases}}\)
a,Có nghiệm duy nhất
b,Có vô số nghiệm?
c,Vô nghiệm?
\(\hept{\begin{cases}x+ky=3\\kx+4y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{3-x}{k}\left(k\ne0\right)\\kx+4.\frac{3-x}{k}=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{3-x}{k}\\\frac{k^2x+12-4x}{k}=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k^2x+12-4x-6k=0\\y=\frac{3-x}{k}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\left(k^2-4\right)-6\left(k-2\right)=0\\y=\frac{3-x}{k}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(k-2\right)\left[x\left(k+2\right)-6\right]=0\\y=\frac{3-x}{k}\end{cases}}\)
a, Với \(k\ne2\)thì Pt có nghiệm là \(x=\frac{6}{k+2}\)
Vậy Pt có nghiệm duy nhất : \(x=\frac{6}{k+2};y=\frac{3-\frac{6}{k+2}}{k}=\frac{3k}{k}=3\)
b,Với \(k=2\)thì pt có vô số nghiệm
ms lp 8 , có chi thông cảm
x+ky=3
=> x=3-ky thế vào phương trình thứ 2
=> k( 3-ky)+4y=6 <=> \(\left(4-k^2\right)y=6-3k\) (3)
+) \(4-k^2=0\Leftrightarrow k=\pm2\)
Với k=2, phương trình 3 trở thành: 0.y=0 => phương trình có vô số nghiệm => hệ ban đầu có vô số nghiệm
Với k=-2, phương trình (3) trở thành: 0.y=12 => phương trình vô nghiệm => hệ ban đầu vô nghiệm
+) \(k\ne\pm2\)Phương trình (3) <=> y=\(\frac{3}{2+k}\)=> x=3-ky=\(3-\frac{3k}{k+2}=\frac{6}{k+2}\)
Hệ phương trình có nghiệm duy nhất (x, y) tương ứng như trên
Kết luận
a) k khác 2, -2
b) k=2
c) k =-2