Trong mặt phẳng tọa độ hãy vẽ đường thẳng đi qua hai điểm O(0;0) và A(1;2). Đường thẳng OA là đồ thị của hàm số nào?
trong mặt phẳng tọa độ hãy vẽ đường thẵng đi qua 2 điểm O(0;0) và A(1;2) .đường thẳng OA là đồ thị của hàm số nào ?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;-2) và B(0;-2;3). Mặt phẳng (P) đi qua gốc tọa độ và vuông góc với đường thẳng đi qua hai điểm A, B có phương trình là
A. x - 2y + z = 0.
B. x - y + z = 0.
C. x + y - 3z = 0.
D. x + 3y - 5z = 0.
Chọn D.
Ta có (P) qua O(0;0;0) và nhận BA → = ( 1 ; 3 ; - 5 ) là một VTPT
⇒ ( P ) : x + 3 y - 5 z = 0 .
vẽ hệ trục tọa độ Oxy. Biểu diễn các điểm A(1,-3), B(-1,3) trên mặt phẳng tọa độ
vẽ đường thẳng đi qua 2 điểm A và B. Em có nhận xét gì về đường thẳng AB với gốc tọa độ O
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ đi qua gốc tọa độ O và điểm I (0; 1; 1). Gọi S là tập hợp các điểm nằm trên mặt phẳng (Oxy), cách đường thẳng Δ một khoảng bằng 6. Tính diện tích hình phẳng giới hạn bởi S.
A. 36π
B.
36
2
π
C. 18 2 π
D. 18π
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=2x-1
1) Vẽ đồ thị đường thẳng (d)
2) Viết phương trình đường thẳng (d1) đi qua A(2;1) và song song với đường thẳng (d'): y = -3x+4.
3) Tìm tọa độ giao điểm của hai đường thẳng (d) và (d')
Trong hệ tọa độ Oxyz, cho điểm A 3 ; 5 ; 3 và hai mặt phẳng P : 2 x + y + 2 z − 8 = 0 , Q : x − 4 y + z − 4 = 0 . Viết phương trình đường thẳng d đi qua A và song song với cả hai mặt phẳng (P), (Q).
A. d : x = 3 + t y = 5 − t z = 3
B. d : x = 3 y = 5 + t z = 3 − t
C. d : x = 3 + t y = 5 z = 3 − t
D. d : x = 3 + t y = 5 z = 3 + t
Phương pháp:
Đường thẳng d song song với cả hai mặt phẳng (P), (Q)
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (-1;1) và đường thẳng
d : x - y + 1 - √2 = 0 . Viết phương trình đường tròn (C) đi qua điểm A, gốc toạ độ O và tiếp xúc với đường thẳng d .
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A (-1;1) và đường thẳng
d : x - y + 1 - √2 = 0 . Viết phương trình đường tròn (C) đi qua điểm A, gốc toạ độ O và tiếp xúc với đường thẳng d .
Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)
\(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)
Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y = 1 2 x 2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là x A = − 1 ; x B = 2 .
a) Tìm tọa độ của hai điểm A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B.
c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).
a) Vì A, B thuộc (P) nên:
x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2 , B ( 2 ; 2 )
b) Gọi phương trình đường thẳng (d) là y = ax + b.
Ta có hệ phương trình:
− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1
Vậy (d): y = 1 2 x + 1 .
c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)
=> OC = 1 và OD = 2
Gọi h là khoảng cách từ O tới (d).
Áp dụng hệ thức về cạnh và đường cao vào ∆ vuông OCD, ta có:
1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5
Vậy khoảng cách từ gốc O tới (d) là 2 5 5 .