Tính diện tích toàn phần của hình chóp cụt đều theo các kích thước cho trên hình
Tính diện tích toàn phần của hình chóp cụt đều cho theo các kích thước trên hình 154.
Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước trên hình vẽ.
Hình vẽ đã cho là hình chóp có 3 mặt xung quanh và mặt đáy là tam giác đều bằng nhau có cạnh là a.Áp dụng định lí pi-ta-go vào tam giác vuông CIA,ta có: A C 2 = A I 2 + C I 2
Suy ra: C I 2 = A C 2 - A I 2 = a 2 - a / 2 2 = 3 a 2 / 4
Vậy CI = a 3 2
Ta có: S A B C =1/2. a .a 3 2 = a 2 3 4 (đvdt)
Vậy S T P =4. a 2 3 4 = a 2 3 (đvdt)
Tính thể tích và diện tích toàn phần của hình chóp đều dưới đây theo kích thước cho trên hình
Đường cao hình chóp bằng: 13 2 - 5 2 = 144 = 12 cm
Diện tích đáy bằng:S = 10.10 = 100 ( c m 2 )
Thể tích hình chóp bằng : V=1/3 S.h=1/3 .100.12=400 ( c m 3 )
Diện tích xung quanh bằng: S x q = Pd = 10.2.13 = 260 ( c m 2 )
Diện tích toàn phần là : S T P = S x q + S đ á y = 260 + 100 = 360 ( c m 2 )
Tính thể tích và diện tích toàn phần của hình chóp đều dưới đây theo kích thước cho trên hình
Đường cao hình chóp bằng: 5 2 - 3 2 = 25 - 9 = 16 = 4 cm
Diện tích đáy bằng:S = 6.6 = 36 ( c m 2 )
Thể tích hình chóp bằng : V=1/3 S.h=1/3 .36.4=48 ( c m 3 )
Diện tích xung quanh bằng: S x q = Pd=2.6.5=60 ( c m 2 )
Diện tích toàn phần là : S T P = S x q + S đ á y = 60 + 36 = 96 ( c m 2 )
Tính thể tích của 1 trụ bê tông cho theo các kích thước ở hình, SJ = 9, OI = IJ. Phần trên là một hình hộp chữ nhật, phần dưới là một hình chóp cụt đều.
Thể tích phần hình hộp chữ nhật:
V = 5.5.5 = 75 (đvtt)
Ta có: IJ = AA' ⇒ IJ = 3
OI = IJ = 3
SJ = 9 ⇒ SO = 3
Suy ra: S A 1 = A 1 A ' ; S D 1 = D 1 D '
Khi đó hình vuông A 1 B 1 C 1 D 1 có cạnh A 1 B 1 = 1/2 A'B' = 2,5
Thể tích hình chóp đều S. A'B'C'D' là:
V= 1/3 (5.5).6 = 50 (đvtt)
Thể tích hình chóp đều A 1 B 1 C 1 D 1 là:
V= 1/3(2,5.2,5).3 = 6,25 (đvtt)
Thể tích hình chóp cụt A'B'C'D'. A 1 B 1 C 1 D 1 là:
V = 50 – 6,25 = 43,75 (đvtt)
Thể tích của một trụ bê tông là:
V = 43,75 + 75 = 118,75 (đvtt).
Tính thể tích và diện tích toàn phần các hình chóp đều dưới đây (theo các kích thước cho trên hình vẽ 153)
Cho hình chóp cụt đều ABCD.A'B'C'D'. Gọi M, N theo thứ tự là trung điểm của các cạnh BC, B’C. Cho biết AB = 4 cm, A'B' = 8 cm và MN = 4 cm.
a) Tính diện tích toàn phần hình chóp cụt.
b) Tính chiều cao hình chóp cụt.
c) Lắp một hình chóp đều có độ dài đáy bằng đúng độ dài đáy nhỏ hình chóp cụt. Cho biết cạnh bên hình chóp đều bằng 2 5 c m , hãy tính thể tích của hình chóp đều mói sau khi lắp ghép.
Tính diện tích toàn phần của hình chóp tam giác đều theo các kích thước cho ở hình 145
V = \(\dfrac{1}{3}\)S . h = \(\dfrac{1}{3}\)a.h.h = \(\dfrac{1}{3}\)ah2
Tính thể tích của một trụ bê tông cho theo các kích thước ở hình 166, SJ = 9, OI = IJ
Phần trên là một hình hộp chữ nhật, phần dưới là một hình chóp cụt tứ giác đều.
Thể tích hình hộp chữ nhật là V1 = 5.5.3 = 75
Vì OI = IJ , IJ = AA' = 3 và SJ = 9 nên OI = 3 và SO = 3
\(\Rightarrow A_1B_1C_1D_1\) là hình vuông cạnh 2,5
Vậy thể tích hình chóp S.A1B1C1D1 là :
\(V_2=\dfrac{1}{3}.3.2,5.2,5=6,25\)
Thể tích hình chóp S.A'B'C'D' là :
\(V_3=\dfrac{1}{3}.6.5.5=50\)
Vậy thể tích cần tính là : \(V=V_1+V_3-V_2=118,75\)