Cho hình lập phương A B C D . A ' B ' C ' D ' có tất cả các cạnh bằng 2. Khoảng cách giữa hai mặt phẳng A B ' D ' v à B C ' D bằng:
A. 3 3
B. 2 3
C. 3 2
D. 3
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng khoảng cách từ các điểm A', B, D; C, B', D tới đường chéo AC' bằng nhau. Tính khoảng cách đó.
Điểm A cách đều ba đỉnh của tam giác đều A'BD vì ta có AB = AD = AA′ = a, điểm C' cũng cách đều ba đỉnh của tam giác đều đó vì ta có:
C′B = C′D = C′A′ = a√2
Vậy AC' là trục của đường tròn ngoại tiếp tam giác A'BD, tức là đường thẳng AC' vuông góc với mặt phẳng (A'BD) tại trọng tâm I của tam giác A'BD. Ta cần tìm khoảng cách A'I.
Ta có A′I = BI = DI = 2A′O/3 với O là tâm của hình vuông ABCD
Ta lại có
Vậy
Tương tự điểm C' cách đều ba đỉnh của tam giác đều CB'D', tính được khoảng cách từ C, B', D' tới đường chéo AC'.
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách giữa hai đường thẳng AB,C′D′ bằng
A. 2 a
B. a
C. 3 a
D. 3 2 a
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách giữa hai đường thẳng AB,C′D′ bằng
A. a 2
B. a.
C. a 3
D. a 3 2
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách giữa hai đường thẳng AB,C′D′ bằng
A. 2 a
B. a
C. 3 a
D. a 3 2
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng các khoảng cách từ các điểm B, C, D, A', B' và D' đến đường chéo AC' đều bằng nhau. Tính khoảng cách đó.
a) Ta có: ∆ ABC’ = ∆ C’CA = ∆ADC’=∆ AA’C’ =∆ C’B’A = ∆C’D’A (c.c.c)
⇒ Các đường cao hạ từ B; C; D; A’; B’; D’ xuống AC’ bằng nhau
( chú ý: các tam giác trên đều có chung cạnh AC’)
Gọi khoảng cách đó là h.
Ta có: CC’ = a;
ΔC’AC vuông tại C, có hai cạnh góc vuông là CA và CC’. Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng khoảng cách từ các điểm A', B, D; C, B', D' tới đường chéo AC' bằng nhau. Tính khoảng cách đó ?
Điểm A cách đều ba đỉnh, của tam giác đều A'BD vì ta có AB = AD = AA' = a, điểm C' cũng cách đều ba đỉnh của tam giác đều đó vì ta có :
\(C'B=C'D=C'A'=a\sqrt{2}\)
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng các khoảng cách từ điểm B, C, D, A', B', D' đến đường chéo AC' đều bằng nhau. Tính khoảng cách đó ?
a. Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa 2 đường thẳng AC và AH
b. Cho hình lập phương ABCD.A'B'C'D'. Số do góc giữa 2 đường thẳng A'B và B'C là?
c. Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I vàJ lần lượt là trung điểm của SC và BC. Số đo góc (IJ,CD) là?
d. Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa 2 vecto AF và EG?
a. Gọi cạnh lập phương là a
Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\)
\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)
\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)
\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)
b.
Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D
Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)
c.
Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB
Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)
d.
\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều
Cho hình lập phương ABCD.A′B′C′D′ cạnh a. Khoảng cách giữa hai đường thẳng BD và A′C′ bằng
A. 2 a.
B. a.
C. 3 a.
D. 2 a 2
Cho hình lập phương ABCD.A′B′C′D′ cạnh a. Khoảng cách từ điểm A đến mặt phẳng (A′B′CD) bằng
A. a 2
B. 3 a
C. 3 3 a
D. 2 2 a
Gọi O là tâm của hình vuông
A D D ' A ' ⇒ A O ⊥ A ' B ' C D ⇒ d A , A ' B ' C D = A O = 2 a 2
Chọn đáp án D.