Trong không gian với hệ tọa độ Oxyz, giả sử mặt cầu S m : x 2 + y 2 + z 2 − 2 m x + 4 m y − 2 z + 4 m 2 + 6 m − 4 = 0 . Để tâm mặt cầu cách mặt phẳng x + 2 y + 2 z − 2 = 0 một khoảng bằng 3 thì m bằng.
A. 3
B. ± 3
C. –3
D. ± 1
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 2 y - 2 z - 1 = 0 và mặt phẳng ( P ) : x + y + 2 z + 2 = 0 . Giả sử điểm M thuộc (P) và điểm N thuộc (S) sao cho M N → cùng phương với vectơ a → = ( 2 ; - 1 ; 1 ) . Độ dài nhỏ nhất của đoạn MN là:
A. 2 6 +4.
B. 2 6 +2.
C. 2 6 -4.
D. 6 +2.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 2 y - 2 z - 1 = 0 và mặt phẳng ( P ) : x + y + 2 z + 2 = 0 . Giả sử điểm M thuộc (P) và điểm N thuộc (S) sao cho M N → cùng phương với vectơ . Độ dài nhỏ nhất của đoạn MN là:
A. 2 6 + 4
B. 2 6 + 2
C. 2 6 - 4
D. 6 + 2
Trong không gian với hệ tọa độ Oxyz, giả sử mặt cầu ( S m ) : x 2 + y 2 + z 2 - 2 m x + 4 m y - 2 z + 4 m 2 + 6 m - 4 = 0 . Để tâm mặt cầu cách mp x+2y+2z-2=0 một khoảng cách bằng 3 thì m bằng
A. 3
B. ± 3
C. - 3
D. ± 1
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x + 1 2 + y - 3 2 + z - 2 2 = 9 Tọa độ tâm và bán kính của mặt cầu (S) là
A. I(-1;3;2) R =9
B. I(1;-3;-2) R = 9
C. I(-1;3;2) R = 3
D. I(1;3;2) R = 3
Đáp án C
Tọa độ tâm và bán kính mặt cầu (S): I(-1;3;2) R = 3
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
Đáp án A
Mặt cầu (S) có tâm I(-1;2;1) và bán kính R=√9=3.
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-5)² + (y-1)² + (z+2)²=9. Tính bán kính R của mặt cầu (S).
A. R=18
B. R=9
C. R=3
D. R=6.
Đáp án C
Mặt cầu (S) có tâm I(a; b; c) và bán kính R thì có phương trình (x-a)²+(y-b)²+(z-c)²=R².
Theo đề bài ta có R²=9=> R=3.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S ): ( x-5 )²+( y-1 )²+( z+2 )²=16. Tính bán kính của (S).
A. 4
B. 16
C. 7
D. 5.
Đáp án A
Bán kính của mặt cầu ( S ) là R=√16 =4.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : x²+y²+z²-2x+4z+1=0. Tâm của mặt cầu là điểm:
A. I(1;-2;0)
B. I(1;0;-2)
C. I(-1;2;0)
D. I(0;1;2).
Đáp án B
Ta có (S): (x-1)²+y²+(z+2)²=4 => (S) có tâm I(1;0;-2).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x²+y²+z²-x+2y+1=0. Tìm tọa độ tâm I và bán kính R của (S).
A. I(-1/2;1;0) và R = 1/4
B. I(1/2;1;0) và R = 1/2
C. I(1/2;-1;0) và R = 1/2
D. I(-1/2;1;0) và R = 1/2
Đáp án C
Theo công thức tính tâm và bán kính mặt cầu từ phương trình tổng quát, với a = - 1/2, b = 1, c = 0 và d=1 ta có tâm I(1/2;-1;0) và R = 1/2